SenseExpo: Efficient Autonomous Exploration with Prediction Information from Lightweight Neural Networks
- URL: http://arxiv.org/abs/2503.16000v1
- Date: Thu, 20 Mar 2025 10:07:51 GMT
- Title: SenseExpo: Efficient Autonomous Exploration with Prediction Information from Lightweight Neural Networks
- Authors: Haojia Gao, Haohua Que, Hoiian Au, Weihao Shan, Mingkai Liu, Yusen Qin, Lei Mu, Rong Zhao, Xinghua Yang, Qi Wei, Fei Qiao,
- Abstract summary: SenseExpo is an efficient autonomous exploration framework based on a lightweight prediction network.<n>Our smallest model achieves better performance on the KTH dataset than U-net and LaMa.
- Score: 3.6404856388891793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes SenseExpo, an efficient autonomous exploration framework based on a lightweight prediction network, which addresses the limitations of traditional methods in computational overhead and environmental generalization. By integrating Generative Adversarial Networks (GANs), Transformer, and Fast Fourier Convolution (FFC), we designed a lightweight prediction model with merely 709k parameters. Our smallest model achieves better performance on the KTH dataset than U-net (24.5M) and LaMa (51M), delivering PSNR 9.026 and SSIM 0.718, particularly representing a 38.7% PSNR improvement over the 51M-parameter LaMa model. Cross-domain testing demonstrates its strong generalization capability, with an FID score of 161.55 on the HouseExpo dataset, significantly outperforming comparable methods. Regarding exploration efficiency, on the KTH dataset,SenseExpo demonstrates approximately a 67.9% time reduction in exploration time compared to MapEx. On the MRPB 1.0 dataset, SenseExpo achieves 77.1% time reduction roughly compared to MapEx. Deployed as a plug-and-play ROS node, the framework seamlessly integrates with existing navigation systems, providing an efficient solution for resource-constrained devices.
Related papers
- Mapping at First Sense: A Lightweight Neural Network-Based Indoor Structures Prediction Method for Robot Autonomous Exploration [3.748837981719551]
Mapping at First Sense is a lightweight neural network-based approach that predicts unobserved areas in local maps.
SenseMapNet integrates convolutional and transformerbased architectures to infer occluded regions.
We show that SenseMapNet achieves an SSIM of 0.78, LPIPS (perceptual quality) of 0.68, and an FID (feature distribution alignment) of 239.79, outperforming conventional methods in map reconstruction quality.
arXiv Detail & Related papers (2025-04-05T05:19:09Z) - TENNs-PLEIADES: Building Temporal Kernels with Orthogonal Polynomials [1.1970409518725493]
We focus on interfacing these networks with event-based data to perform online classification and detection with low latency.
We experimented with three event-based benchmarks and obtained state-of-the-art results on all three by large margins with significantly smaller memory and compute costs.
arXiv Detail & Related papers (2024-05-20T17:06:24Z) - ParFormer: A Vision Transformer with Parallel Mixer and Sparse Channel Attention Patch Embedding [9.144813021145039]
This paper introduces ParFormer, a vision transformer that incorporates a Parallel Mixer and a Sparse Channel Attention Patch Embedding (SCAPE)
ParFormer improves feature extraction by combining convolutional and attention mechanisms.
For edge device deployment, ParFormer-T excels with a throughput of 278.1 images/sec, which is 1.38 $times$ higher than EdgeNeXt-S.
The larger variant, ParFormer-L, reaches 83.5% Top-1 accuracy, offering a balanced trade-off between accuracy and efficiency.
arXiv Detail & Related papers (2024-03-22T07:32:21Z) - Object-Size-Driven Design of Convolutional Neural Networks: Virtual Axle Detection based on Raw Data [0.0]
This study presents a novel approach for real-time detection of train axles using sensors arbitrarily placed on bridges.<n>The developed Virtual Axle Detector with Enhanced Receptive Field (VADER) has been validated on a single-track railway bridge.<n>Using raw data as input outperformed the state-of-the-art spectrogram-based method in both speed and memory usage by 99%.
arXiv Detail & Related papers (2023-09-04T12:53:54Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework.
We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects.
Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS 2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone 2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia
arXiv Detail & Related papers (2023-02-15T06:05:14Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z) - EAutoDet: Efficient Architecture Search for Object Detection [110.99532343155073]
EAutoDet framework can discover practical backbone and FPN architectures for object detection in 1.4 GPU-days.
We propose a kernel reusing technique by sharing the weights of candidate operations on one edge and consolidating them into one convolution.
In particular, the discovered architectures surpass state-of-the-art object detection NAS methods and achieve 40.1 mAP with 120 FPS and 49.2 mAP with 41.3 FPS on COCO test-dev set.
arXiv Detail & Related papers (2022-03-21T05:56:12Z) - Pixel Difference Networks for Efficient Edge Detection [71.03915957914532]
We propose a lightweight yet effective architecture named Pixel Difference Network (PiDiNet) for efficient edge detection.
Extensive experiments on BSDS500, NYUD, and Multicue datasets are provided to demonstrate its effectiveness.
A faster version of PiDiNet with less than 0.1M parameters can still achieve comparable performance among state of the arts with 200 FPS.
arXiv Detail & Related papers (2021-08-16T10:42:59Z) - Non-Parametric Adaptive Network Pruning [125.4414216272874]
We introduce non-parametric modeling to simplify the algorithm design.
Inspired by the face recognition community, we use a message passing algorithm to obtain an adaptive number of exemplars.
EPruner breaks the dependency on the training data in determining the "important" filters.
arXiv Detail & Related papers (2021-01-20T06:18:38Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
Dilation convolution is a critical mutant of standard convolution neural network to control effective receptive fields and handle large scale variance of objects.
We propose a new mutant of dilated convolution, namely inception (dilated) convolution where the convolutions have independent dilation among different axes, channels and layers.
We explore a practical method for fitting the complex inception convolution to the data, a simple while effective dilation search algorithm(EDO) based on statistical optimization is developed.
arXiv Detail & Related papers (2020-12-25T14:58:35Z) - Grafted network for person re-identification [14.372506245952383]
Convolutional neural networks have shown outstanding effectiveness in person re-identification (re-ID)
We propose a novel grafted network (GraftedNet), which is designed by grafting a high-accuracy rootstock and a light-weighted scion.
Experimental results show that the proposed GraftedNet achieves 93.02%, 85.3% and 76.2% in Rank-1 and 81.6%, 74.7% and 71.6% in mAP, with only 4.6M parameters.
arXiv Detail & Related papers (2020-06-02T22:33:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.