GazeSCRNN: Event-based Near-eye Gaze Tracking using a Spiking Neural Network
- URL: http://arxiv.org/abs/2503.16012v1
- Date: Thu, 20 Mar 2025 10:32:15 GMT
- Title: GazeSCRNN: Event-based Near-eye Gaze Tracking using a Spiking Neural Network
- Authors: Stijn Groenen, Marzieh Hassanshahi Varposhti, Mahyar Shahsavari,
- Abstract summary: This work introduces GazeSCRNN, a novel convolutional recurrent neural network designed for event-based near-eye gaze tracking.<n>Model processes event streams from DVS cameras using Adaptive Leaky-Integrate-and-Fire (ALIF) neurons and a hybrid architecture for-temporal data.<n>The most accurate model achieved a Mean Angle Error (MAE) of 6.034degdeg and a Mean Pupil Error (MPE) of 2.094 mm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces GazeSCRNN, a novel spiking convolutional recurrent neural network designed for event-based near-eye gaze tracking. Leveraging the high temporal resolution, energy efficiency, and compatibility of Dynamic Vision Sensor (DVS) cameras with event-based systems, GazeSCRNN uses a spiking neural network (SNN) to address the limitations of traditional gaze-tracking systems in capturing dynamic movements. The proposed model processes event streams from DVS cameras using Adaptive Leaky-Integrate-and-Fire (ALIF) neurons and a hybrid architecture optimized for spatio-temporal data. Extensive evaluations on the EV-Eye dataset demonstrate the model's accuracy in predicting gaze vectors. In addition, we conducted ablation studies to reveal the importance of the ALIF neurons, dynamic event framing, and training techniques, such as Forward-Propagation-Through-Time, in enhancing overall system performance. The most accurate model achieved a Mean Angle Error (MAE) of 6.034{\deg} and a Mean Pupil Error (MPE) of 2.094 mm. Consequently, this work is pioneering in demonstrating the feasibility of using SNNs for event-based gaze tracking, while shedding light on critical challenges and opportunities for further improvement.
Related papers
- Continuous Spiking Graph Neural Networks [43.28609498855841]
Continuous graph neural networks (CGNNs) have garnered significant attention due to their ability to generalize existing discrete graph neural networks (GNNs)
We introduce the high-order structure of COS-GNN, which utilizes the second-order ODE for spiking representation and continuous propagation.
We provide the theoretical proof that COS-GNN effectively mitigates the issues of exploding and vanishing gradients, enabling us to capture long-range dependencies between nodes.
arXiv Detail & Related papers (2024-04-02T12:36:40Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
Spiking neural networks (SNNs) have garnered considerable attention owing to their ability to run on neuromorphic devices with super-high speeds.
We propose a novel approach fully spiking denoising diffusion implicit model (FSDDIM) to construct a diffusion model within SNNs.
We demonstrate that the proposed method outperforms the state-of-the-art fully spiking generative model.
arXiv Detail & Related papers (2023-12-04T09:07:09Z) - Automotive Object Detection via Learning Sparse Events by Spiking Neurons [20.930277906912394]
Spiking Neural Networks (SNNs) provide a temporal representation that is inherently aligned with event-based data.
We present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection.
arXiv Detail & Related papers (2023-07-24T15:47:21Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Training Robust Spiking Neural Networks with ViewPoint Transform and
SpatioTemporal Stretching [4.736525128377909]
We propose a novel data augmentation method, ViewPoint Transform and Spatio Stretching (VPT-STS)
It improves the robustness of spiking neural networks by transforming the rotation centers and angles in thetemporal domain to generate samples from different viewpoints.
Experiments on prevailing neuromorphic datasets demonstrate that VPT-STS is broadly effective on multi-event representations and significantly outperforms pure spatial geometric transformations.
arXiv Detail & Related papers (2023-03-14T03:09:56Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - HyNNA: Improved Performance for Neuromorphic Vision Sensor based
Surveillance using Hybrid Neural Network Architecture [7.293414498855147]
We improve on a recently proposed hybrid event-frame approach by using morphological image processing algorithms for region proposal.
We also address the low-power requirement for object detection and classification by exploring various convolutional neural network (CNN) architectures.
Specifically, we compare the results obtained from our object detection framework against the state-of-the-art low-power NVS surveillance system and show an improved accuracy of 82.16% from 63.1%.
arXiv Detail & Related papers (2020-03-19T07:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.