HyNNA: Improved Performance for Neuromorphic Vision Sensor based
Surveillance using Hybrid Neural Network Architecture
- URL: http://arxiv.org/abs/2003.08603v1
- Date: Thu, 19 Mar 2020 07:18:33 GMT
- Title: HyNNA: Improved Performance for Neuromorphic Vision Sensor based
Surveillance using Hybrid Neural Network Architecture
- Authors: Deepak Singla, Soham Chatterjee, Lavanya Ramapantulu, Andres Ussa,
Bharath Ramesh and Arindam Basu
- Abstract summary: We improve on a recently proposed hybrid event-frame approach by using morphological image processing algorithms for region proposal.
We also address the low-power requirement for object detection and classification by exploring various convolutional neural network (CNN) architectures.
Specifically, we compare the results obtained from our object detection framework against the state-of-the-art low-power NVS surveillance system and show an improved accuracy of 82.16% from 63.1%.
- Score: 7.293414498855147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applications in the Internet of Video Things (IoVT) domain have very tight
constraints with respect to power and area. While neuromorphic vision sensors
(NVS) may offer advantages over traditional imagers in this domain, the
existing NVS systems either do not meet the power constraints or have not
demonstrated end-to-end system performance. To address this, we improve on a
recently proposed hybrid event-frame approach by using morphological image
processing algorithms for region proposal and address the low-power requirement
for object detection and classification by exploring various convolutional
neural network (CNN) architectures. Specifically, we compare the results
obtained from our object detection framework against the state-of-the-art
low-power NVS surveillance system and show an improved accuracy of 82.16% from
63.1%. Moreover, we show that using multiple bits does not improve accuracy,
and thus, system designers can save power and area by using only single bit
event polarity information. In addition, we explore the CNN architecture space
for object classification and show useful insights to trade-off accuracy for
lower power using lesser memory and arithmetic operations.
Related papers
- SpikeAtConv: An Integrated Spiking-Convolutional Attention Architecture for Energy-Efficient Neuromorphic Vision Processing [11.687193535939798]
Spiking Neural Networks (SNNs) offer a biologically inspired alternative to conventional artificial neural networks.
SNNs have yet to achieve competitive performance on complex visual tasks, such as image classification.
This study introduces a novel SNN architecture designed to enhance efficacy and task accuracy.
arXiv Detail & Related papers (2024-11-26T13:57:38Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Optimizing Convolutional Neural Network Architecture [0.0]
Convolutional Neural Networks (CNN) are widely used to face challenging tasks like speech recognition, natural language processing or computer vision.
We propose Optimizing Convolutional Neural Network Architecture (OCNNA), a novel CNN optimization and construction method based on pruning and knowledge distillation.
Our method has been compared with more than 20 convolutional neural network simplification algorithms obtaining outstanding results.
arXiv Detail & Related papers (2023-12-17T12:23:11Z) - Parameter Convex Neural Networks [13.42851919291587]
We propose the exponential multilayer neural network (EMLP) which is convex with regard to the parameters of the neural network under some conditions.
For late experiments, we use the same architecture to make the exponential graph convolutional network (EGCN) and do the experiment on the graph classificaion dataset.
arXiv Detail & Related papers (2022-06-11T16:44:59Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - A Spiking Neural Network for Image Segmentation [3.4998703934432682]
We convert the deep Artificial Neural Network (ANN) architecture U-Net to a Spiking Neural Network (SNN) architecture using the Nengo framework.
Both rate-based and spike-based models are trained and optimized for benchmarking performance and power.
The neuromorphic implementation on the Intel Loihi neuromorphic chip is over 2x more energy-efficient than conventional hardware.
arXiv Detail & Related papers (2021-06-16T16:23:18Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.