Temporal-Spatial Attention Network (TSAN) for DoS Attack Detection in Network Traffic
- URL: http://arxiv.org/abs/2503.16047v2
- Date: Fri, 21 Mar 2025 17:40:15 GMT
- Title: Temporal-Spatial Attention Network (TSAN) for DoS Attack Detection in Network Traffic
- Authors: Bisola Faith Kayode, Akinyemi Sadeeq Akintola, Oluwole Fagbohun, Egonna Anaesiuba-Bristol, Onyekachukwu Ojumah, Oluwagbade Odimayo, Toyese Oloyede, Aniema Inyang, Teslim Kazeem, Habeeb Alli, Udodirim Ibem Offia, Prisca Chinazor Amajuoyi,
- Abstract summary: We propose a novel Temporal-Spatial Attention Network (TSAN) architecture for detecting Denial of Service (DoS) attacks in network traffic.<n>By leveraging both temporal and spatial features of network traffic, our approach captures complex traffic patterns and anomalies that traditional methods might miss.<n> Experimental results on the NSL-KDD dataset demonstrate that TSAN outperforms state-of-the-art models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Denial-of-Service (DoS) attacks remain a critical threat to network security, disrupting services and causing significant economic losses. Traditional detection methods, including statistical and rule-based models, struggle to adapt to evolving attack patterns. To address this challenge, we propose a novel Temporal-Spatial Attention Network (TSAN) architecture for detecting Denial of Service (DoS) attacks in network traffic. By leveraging both temporal and spatial features of network traffic, our approach captures complex traffic patterns and anomalies that traditional methods might miss. The TSAN model incorporates transformer-based temporal encoding, convolutional spatial encoding, and a cross-attention mechanism to fuse these complementary feature spaces. Additionally, we employ multi-task learning with auxiliary tasks to enhance the model's robustness. Experimental results on the NSL-KDD dataset demonstrate that TSAN outperforms state-of-the-art models, achieving superior accuracy, precision, recall, and F1-score while maintaining computational efficiency for real-time deployment. The proposed architecture offers an optimal balance between detection accuracy and computational overhead, making it highly suitable for real-world network security applications.
Related papers
- Research on Cloud Platform Network Traffic Monitoring and Anomaly Detection System based on Large Language Models [5.524069089627854]
This paper introduces a large language model (LLM)-based network traffic monitoring and anomaly detection system.
A pre-trained large language model analyzes and predicts the probable network traffic, and an anomaly detection layer considers temporality and context.
Results show that the designed model outperforms traditional methods in detection accuracy and computational efficiency.
arXiv Detail & Related papers (2025-04-22T07:42:07Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.<n>We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - A Temporal Convolutional Network-based Approach for Network Intrusion Detection [0.0]
This study proposes a Temporal Convolutional Network(TCN) model featuring a residual block architecture with dilated convolutions to capture dependencies in network traffic data.<n>The proposed model achieved an accuracy of 96.72% and a loss of 0.0688, outperforming 1D CNN, CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-GRU-LSTM models.
arXiv Detail & Related papers (2024-12-23T10:19:29Z) - PCA-Featured Transformer for Jamming Detection in 5G UAV Networks [0.5999777817331317]
Unmanned Aerial Vehicles (UAVs) face significant security risks from jamming attacks, which can compromise network functionality.<n>Traditional detection methods often fall short when confronting AI-powered jamming that dynamically modifies its behavior.<n>We introduce a novel U-shaped transformer architecture to refine feature representations for improved wireless security.
arXiv Detail & Related papers (2024-12-19T16:13:04Z) - Simplicity over Complexity: An ARN-Based Intrusion Detection Method for Industrial Control Network [14.146159961276615]
Industrial control network (ICN) is characterized by real-time responsiveness and reliability.<n>ICN struggles with some challenges, such as malicious user intrusion and hacker attack.
arXiv Detail & Related papers (2024-12-19T09:20:39Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
Digital twins (DTs) embody real-time monitoring, predictive, and enhanced decision-making capabilities.<n>This study investigates the security challenges in distributed network DT systems, which potentially undermine the reliability of subsequent network applications.
arXiv Detail & Related papers (2024-07-02T03:32:09Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
This paper investigates the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
We show that while the ResNet-18 model trained on DWT spectrograms achieves a high recognition accuracy, attacking this model is relatively more costly for the adversary.
arXiv Detail & Related papers (2022-04-14T15:14:08Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow learning Networks (FSNet) is a holistic framework for online time-series forecasting.
FSNet balances fast adaptation to recent changes and retrieving similar old knowledge.
Our code will be made publicly available.
arXiv Detail & Related papers (2022-02-23T18:23:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.