Simplicity over Complexity: An ARN-Based Intrusion Detection Method for Industrial Control Network
- URL: http://arxiv.org/abs/2412.14669v1
- Date: Thu, 19 Dec 2024 09:20:39 GMT
- Title: Simplicity over Complexity: An ARN-Based Intrusion Detection Method for Industrial Control Network
- Authors: Ziyi Liu, Dengpan Ye, Changsong Yang, Yong Ding, Yueling Liu, Long Tang, Chuanxi Chen,
- Abstract summary: Industrial control network (ICN) is characterized by real-time responsiveness and reliability.
ICN struggles with some challenges, such as malicious user intrusion and hacker attack.
- Score: 14.146159961276615
- License:
- Abstract: Industrial control network (ICN) is characterized by real-time responsiveness and reliability, which plays a key role in increasing production speed, rational and efficient processing, and managing the production process. Despite tremendous advantages, ICN inevitably struggles with some challenges, such as malicious user intrusion and hacker attack. To detect malicious intrusions in ICN, intrusion detection systems have been deployed. However, in ICN, network traffic data is equipped with characteristics of large scale, irregularity, multiple features, temporal correlation and high dimensionality, which greatly affect the efficiency and performance. To properly solve the above problems, we design a new intrusion detection method for ICN. Specifically, we first design a novel neural network model called associative recurrent network (ARN), which can properly handle the relationship between past moment hidden state and current moment information. Then, we adopt ARN to design a new intrusion detection method that can efficiently and accurately detect malicious intrusions in ICN. Subsequently, we demonstrate the high efficiency of our proposed method through theoretical computational complexity analysis. Finally, we develop a prototype implementation to evaluate the accuracy. The experimental results prove that our proposed method has sate-of-the-art performance on both the ICN dataset SWaT and the conventional network traffic dataset UNSW-NB15. The accuracies on the SWaT dataset and the UNSW-NB15 dataset reach 95.48% and 97.61%, respectively.
Related papers
- A Temporal Convolutional Network-based Approach for Network Intrusion Detection [0.0]
This study proposes a Temporal Convolutional Network(TCN) model featuring a residual block architecture with dilated convolutions to capture dependencies in network traffic data.
The proposed model achieved an accuracy of 96.72% and a loss of 0.0688, outperforming 1D CNN, CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-GRU-LSTM models.
arXiv Detail & Related papers (2024-12-23T10:19:29Z) - Enhancing Internet of Things Security throughSelf-Supervised Graph Neural Networks [1.0678175996321808]
New types of attacks often have significantly fewer samples than more common attacks, leading to unbalanced datasets.
We suggest a new approach to IoT intrusion detection using Self-Supervised Learning (SSL) with a Markov Graph Convolutional Network (MarkovGCN)
Our approach leverages the inherent structure of IoT networks to pre-train a GCN, which is then fine-tuned for the intrusion detection task.
arXiv Detail & Related papers (2024-12-17T17:40:14Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
Intrusion Detection Systems (IDS) play a critical role in protecting interconnected networks by detecting malicious actors and activities.
This paper introduces a novel ML-based network intrusion detection model that uses Random Oversampling (RO) to address data imbalance and Stacking Feature Embedding (PCA) for dimension reduction.
Using the CIC-IDS 2017 dataset, DT, RF, and ET models reach 99.99% accuracy, while DT and RF models obtain 99.94% accuracy on CIC-IDS 2018 dataset.
arXiv Detail & Related papers (2024-01-22T05:49:41Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Efficient Global Robustness Certification of Neural Networks via
Interleaving Twin-Network Encoding [8.173681464694651]
We formulate the global robustness certification for neural networks with ReLU activation functions as a mixed-integer linear programming (MILP) problem.
Our approach includes a novel interleaving twin-network encoding scheme, where two copies of the neural network are encoded side-by-side.
A case study of closed-loop control safety verification is conducted, and demonstrates the importance and practicality of our approach.
arXiv Detail & Related papers (2022-03-26T19:23:37Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.