Semantic-Guided Global-Local Collaborative Networks for Lightweight Image Super-Resolution
- URL: http://arxiv.org/abs/2503.16056v1
- Date: Thu, 20 Mar 2025 11:43:55 GMT
- Title: Semantic-Guided Global-Local Collaborative Networks for Lightweight Image Super-Resolution
- Authors: Wanshu Fan, Yue Wang, Cong Wang, Yunzhe Zhang, Wei Wang, Dongsheng Zhou,
- Abstract summary: Single-Image Super-Resolution (SISR) plays a pivotal role in enhancing the accuracy and reliability of measurement systems.<n>We propose a Semantic-Guided Global-Local Collaborative Network (SGGLC-Net) for lightweight SISR.
- Score: 9.666827340439669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-Image Super-Resolution (SISR) plays a pivotal role in enhancing the accuracy and reliability of measurement systems, which are integral to various vision-based instrumentation and measurement applications. These systems often require clear and detailed images for precise object detection and recognition. However, images captured by visual measurement tools frequently suffer from degradation, including blurring and loss of detail, which can impede measurement accuracy.As a potential remedy, we in this paper propose a Semantic-Guided Global-Local Collaborative Network (SGGLC-Net) for lightweight SISR. Our SGGLC-Net leverages semantic priors extracted from a pre-trained model to guide the super-resolution process, enhancing image detail quality effectively. Specifically,we propose a Semantic Guidance Module that seamlessly integrates the semantic priors into the super-resolution network, enabling the network to more adeptly capture and utilize semantic priors, thereby enhancing image details. To further explore both local and non-local interactions for improved detail rendition,we propose a Global-Local Collaborative Module, which features three Global and Local Detail Enhancement Modules, as well as a Hybrid Attention Mechanism to work together to efficiently learn more useful features. Our extensive experiments show that SGGLC-Net achieves competitive PSNR and SSIM values across multiple benchmark datasets, demonstrating higher performance with the multi-adds reduction of 12.81G compared to state-of-the-art lightweight super-resolution approaches. These improvements underscore the potential of our approach to enhance the precision and effectiveness of visual measurement systems. Codes are at https://github.com/fanamber831/SGGLC-Net.
Related papers
- SSNet: Saliency Prior and State Space Model-based Network for Salient Object Detection in RGB-D Images [9.671347245207121]
We propose SSNet, a saliency-prior and state space model (SSM)-based network for the RGB-D SOD task.<n>Unlike existing convolution- or transformer-based approaches, SSNet introduces an SSM-based multi-modal multi-scale decoder module.<n>We also introduce a saliency enhancement module (SEM) that integrates three saliency priors with deep features to refine feature representation.
arXiv Detail & Related papers (2025-03-04T04:38:36Z) - Global Semantic-Guided Sub-image Feature Weight Allocation in High-Resolution Large Vision-Language Models [50.98559225639266]
Sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability.<n>Global Semantic-guided Weight Allocator (GSWA) module allocates weights to sub-images based on their relative information density.<n>SleighVL, a lightweight yet high-performing model, outperforms models with comparable parameters and remains competitive with larger models.
arXiv Detail & Related papers (2025-01-24T06:42:06Z) - LWGANet: A Lightweight Group Attention Backbone for Remote Sensing Visual Tasks [20.924609707499915]
This article introduces LWGANet, a specialized lightweight backbone network tailored for RS visual tasks.
LWGA module, tailored for RS imagery, adeptly harnesses redundant features to extract a wide range of spatial information.
The results confirm LWGANet's widespread applicability and its ability to maintain an optimal balance between high performance and low complexity.
arXiv Detail & Related papers (2025-01-17T08:56:17Z) - Sewer Image Super-Resolution with Depth Priors and Its Lightweight Network [11.13549330516683]
Quick-view (QV) technique serves as a primary method for detecting defects within sewerage systems.<n>Super-resolution is an effective way to improve image quality and has been applied in a variety of scenes.<n>This study introduces a novel Depth-guided, Reference-based Super-Resolution framework denoted as DSRNet.
arXiv Detail & Related papers (2024-07-27T14:45:34Z) - RS-Mamba for Large Remote Sensing Image Dense Prediction [58.12667617617306]
We propose the Remote Sensing Mamba (RSM) for dense prediction tasks in large VHR remote sensing images.
RSM is specifically designed to capture the global context of remote sensing images with linear complexity.
Our model achieves better efficiency and accuracy than transformer-based models on large remote sensing images.
arXiv Detail & Related papers (2024-04-03T12:06:01Z) - CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
We introduce the Cognitive Super-Resolution (CoSeR) framework, empowering SR models with the capacity to comprehend low-resolution images.
We achieve this by marrying image appearance and language understanding to generate a cognitive embedding.
To further improve image fidelity, we propose a novel condition injection scheme called "All-in-Attention"
arXiv Detail & Related papers (2023-11-27T16:33:29Z) - Attention Guided Network for Salient Object Detection in Optical Remote
Sensing Images [16.933770557853077]
salient object detection in optical remote sensing images (RSI-SOD) is a very difficult task.
We propose a novel Attention Guided Network (AGNet) for SOD in optical RSIs, including position enhancement stage and detail refinement stage.
AGNet achieves competitive performance compared to other state-of-the-art methods.
arXiv Detail & Related papers (2022-07-05T01:01:03Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Multi-Content Complementation Network for Salient Object Detection in
Optical Remote Sensing Images [108.79667788962425]
salient object detection in optical remote sensing images (RSI-SOD) remains to be a challenging emerging topic.
We propose a novel Multi-Content Complementation Network (MCCNet) to explore the complementarity of multiple content for RSI-SOD.
In MCCM, we consider multiple types of features that are critical to RSI-SOD, including foreground features, edge features, background features, and global image-level features.
arXiv Detail & Related papers (2021-12-02T04:46:40Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.