Bokehlicious: Photorealistic Bokeh Rendering with Controllable Apertures
- URL: http://arxiv.org/abs/2503.16067v2
- Date: Tue, 25 Mar 2025 13:43:25 GMT
- Title: Bokehlicious: Photorealistic Bokeh Rendering with Controllable Apertures
- Authors: Tim Seizinger, Florin-Alexandru Vasluianu, Marcos V. Conde, Zongwei Wu, Radu Timofte,
- Abstract summary: Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography.<n>We propose Bokehlicious, a highly efficient network that provides intuitive control over Bokeh strength through an Aperture-Aware Attention mechanism.<n>We present RealBokeh, a novel dataset featuring 23,000 high-resolution (24-MP) images captured by professional photographers.
- Score: 51.16022611377722
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography. While recent learning-based approaches show promising results, generating realistic Bokeh with variable strength remains challenging. Existing methods require additional inputs and suffer from unrealistic Bokeh reproduction due to reliance on synthetic data. In this work, we propose Bokehlicious, a highly efficient network that provides intuitive control over Bokeh strength through an Aperture-Aware Attention mechanism, mimicking the physical lens aperture. To further address the lack of high-quality real-world data, we present RealBokeh, a novel dataset featuring 23,000 high-resolution (24-MP) images captured by professional photographers, covering diverse scenes with varied aperture and focal length settings. Evaluations on both our new RealBokeh and established Bokeh rendering benchmarks show that Bokehlicious consistently outperforms SOTA methods while significantly reducing computational cost and exhibiting strong zero-shot generalization. Our method and dataset further extend to defocus deblurring, achieving competitive results on the RealDOF benchmark. Our code and data can be found at https://github.com/TimSeizinger/Bokehlicious
Related papers
- Variable Aperture Bokeh Rendering via Customized Focal Plane Guidance [18.390543681127976]
The proposed method has achieved competitive state-of-the-art performance with only 4.4M parameters, which is much lighter than mainstream computational bokeh models.
The proposed method has achieved competitive state-of-the-art performance with only 4.4M parameters, which is much lighter than mainstream computational bokeh models.
arXiv Detail & Related papers (2024-10-18T12:04:23Z) - BokehOrNot: Transforming Bokeh Effect with Image Transformer and Lens
Metadata Embedding [2.3784282912975345]
Bokeh effect is an optical phenomenon that offers a pleasant visual experience, typically generated by high-end cameras with wide aperture lenses.
We propose a novel universal method for embedding lens metadata into the model and introducing a loss calculation method using alpha masks.
Based on the above techniques, we propose the BokehOrNot model, which is capable of producing both blur-to-sharp and sharp-to-blur bokeh effect.
arXiv Detail & Related papers (2023-06-06T21:49:56Z) - Realistic Bokeh Effect Rendering on Mobile GPUs, Mobile AI & AIM 2022
challenge: Report [75.79829464552311]
This challenge was to develop an efficient end-to-end AI-based rendering approach that can run on modern smartphone models.
The resulting model was evaluated on the Kirin 9000's Mali GPU that provides excellent acceleration results for the majority of common deep learning ops.
arXiv Detail & Related papers (2022-11-07T22:42:02Z) - Bokeh-Loss GAN: Multi-Stage Adversarial Training for Realistic
Edge-Aware Bokeh [3.8811606213997587]
We tackle the problem of monocular bokeh synthesis, where we attempt to render a shallow depth of field image from a single all-in-focus image.
Unlike in DSLR cameras, this effect can not be captured directly in mobile cameras due to the physical constraints of the mobile aperture.
We propose a network-based approach that is capable of rendering realistic monocular bokeh from single image inputs.
arXiv Detail & Related papers (2022-08-25T20:57:07Z) - MC-Blur: A Comprehensive Benchmark for Image Deblurring [127.6301230023318]
In most real-world images, blur is caused by different factors, e.g., motion and defocus.
We construct a new large-scale multi-cause image deblurring dataset (called MC-Blur)
Based on the MC-Blur dataset, we conduct extensive benchmarking studies to compare SOTA methods in different scenarios.
arXiv Detail & Related papers (2021-12-01T02:10:42Z) - AIM 2020 Challenge on Rendering Realistic Bokeh [95.87775182820518]
This paper reviews the second AIM realistic bokeh effect rendering challenge.
The goal was to learn a realistic shallow focus technique using a large-scale EBB! bokeh dataset.
The participants had to render bokeh effect based on only one single frame without any additional data from other cameras or sensors.
arXiv Detail & Related papers (2020-11-10T09:15:38Z) - BGGAN: Bokeh-Glass Generative Adversarial Network for Rendering
Realistic Bokeh [19.752904494597328]
We propose a novel generator called Glass-Net, which generates bokeh images not relying on complex hardware.
Experiments show that our method is able to render a high-quality bokeh effect and process one $1024 times 1536$ pixel image in 1.9 seconds on all smartphone chipsets.
arXiv Detail & Related papers (2020-11-04T11:56:34Z) - Defocus Blur Detection via Depth Distillation [64.78779830554731]
We introduce depth information into DBD for the first time.
In detail, we learn the defocus blur from ground truth and the depth distilled from a well-trained depth estimation network.
Our approach outperforms 11 other state-of-the-art methods on two popular datasets.
arXiv Detail & Related papers (2020-07-16T04:58:09Z) - Rendering Natural Camera Bokeh Effect with Deep Learning [95.86933125733673]
Bokeh is an important artistic effect used to highlight the main object of interest on the photo.
Mobile cameras are unable to produce shallow depth-of-field photos due to a very small aperture diameter of their optics.
We propose to learn a realistic shallow focus technique directly from the photos produced by DSLR cameras.
arXiv Detail & Related papers (2020-06-10T07:28:06Z) - Depth-aware Blending of Smoothed Images for Bokeh Effect Generation [10.790210744021072]
In this paper, an end-to-end deep learning framework is proposed to generate high-quality bokeh effect from images.
The network is lightweight and can process an HD image in 0.03 seconds.
This approach ranked second in AIM 2019 Bokeh effect challenge-Perceptual Track.
arXiv Detail & Related papers (2020-05-28T18:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.