BokehDiff: Neural Lens Blur with One-Step Diffusion
- URL: http://arxiv.org/abs/2507.18060v1
- Date: Thu, 24 Jul 2025 03:23:19 GMT
- Title: BokehDiff: Neural Lens Blur with One-Step Diffusion
- Authors: Chengxuan Zhu, Qingnan Fan, Qi Zhang, Jinwei Chen, Huaqi Zhang, Chao Xu, Boxin Shi,
- Abstract summary: We introduce BokehDiff, a lens blur rendering method that achieves physically accurate and visually appealing outcomes.<n>Our method employs a physics-inspired self-attention module that aligns with the image formation process.<n>We adapt the diffusion model to the one-step inference scheme without introducing additional noise, and achieve results of high quality and fidelity.
- Score: 53.11429878683807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce BokehDiff, a novel lens blur rendering method that achieves physically accurate and visually appealing outcomes, with the help of generative diffusion prior. Previous methods are bounded by the accuracy of depth estimation, generating artifacts in depth discontinuities. Our method employs a physics-inspired self-attention module that aligns with the image formation process, incorporating depth-dependent circle of confusion constraint and self-occlusion effects. We adapt the diffusion model to the one-step inference scheme without introducing additional noise, and achieve results of high quality and fidelity. To address the lack of scalable paired data, we propose to synthesize photorealistic foregrounds with transparency with diffusion models, balancing authenticity and scene diversity.
Related papers
- A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising [43.44633086975204]
We propose an intuitive method for leveraging pretrained diffusion models.<n>We then introduce our proposed Linear Combination Diffusion Denoiser.<n> LCDD achieves state-of-the-art performance and offers controlled, well-behaved trade-offs.
arXiv Detail & Related papers (2025-03-18T19:02:19Z) - Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models [26.79219274697864]
Bokeh Diffusion is a scene-consistent bokeh control framework.<n>We introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations.<n>Our approach enables flexible, lens-like blur control, supports downstream applications such as real image editing via inversion.
arXiv Detail & Related papers (2025-03-11T13:49:12Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
We propose adaptive likelihood estimation and MAP inference during the reverse diffusion process to tackle real-world noise.
Experiments and analyses on diverse real-world datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-10-23T02:52:53Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - The Surprising Effectiveness of Diffusion Models for Optical Flow and
Monocular Depth Estimation [42.48819460873482]
Denoising diffusion probabilistic models have transformed image generation with their impressive fidelity and diversity.
We show that they also excel in estimating optical flow and monocular depth, surprisingly, without task-specific architectures and loss functions.
arXiv Detail & Related papers (2023-06-02T21:26:20Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Image Embedding for Denoising Generative Models [0.0]
We focus on Denoising Diffusion Implicit Models due to the deterministic nature of their reverse diffusion process.
As a side result of our investigation, we gain a deeper insight into the structure of the latent space of diffusion models.
arXiv Detail & Related papers (2022-12-30T17:56:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.