PoseTraj: Pose-Aware Trajectory Control in Video Diffusion
- URL: http://arxiv.org/abs/2503.16068v1
- Date: Thu, 20 Mar 2025 12:01:43 GMT
- Title: PoseTraj: Pose-Aware Trajectory Control in Video Diffusion
- Authors: Longbin Ji, Lei Zhong, Pengfei Wei, Changjian Li,
- Abstract summary: We introduce PoseTraj, a pose-aware video dragging model for generating 3D-aligned motion from 2D trajectories.<n>Our method adopts a novel two-stage pose-aware pretraining framework, improving 3D understanding across diverse trajectories.
- Score: 17.0187150041712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in trajectory-guided video generation have achieved notable progress. However, existing models still face challenges in generating object motions with potentially changing 6D poses under wide-range rotations, due to limited 3D understanding. To address this problem, we introduce PoseTraj, a pose-aware video dragging model for generating 3D-aligned motion from 2D trajectories. Our method adopts a novel two-stage pose-aware pretraining framework, improving 3D understanding across diverse trajectories. Specifically, we propose a large-scale synthetic dataset PoseTraj-10K, containing 10k videos of objects following rotational trajectories, and enhance the model perception of object pose changes by incorporating 3D bounding boxes as intermediate supervision signals. Following this, we fine-tune the trajectory-controlling module on real-world videos, applying an additional camera-disentanglement module to further refine motion accuracy. Experiments on various benchmark datasets demonstrate that our method not only excels in 3D pose-aligned dragging for rotational trajectories but also outperforms existing baselines in trajectory accuracy and video quality.
Related papers
- SpatialTrackerV2: 3D Point Tracking Made Easy [73.0350898700048]
SpatialTrackerV2 is a feed-forward 3D point tracking method for monocular videos.<n>It decomposes world-space 3D motion into scene geometry, camera ego-motion, and pixel-wise object motion.<n>By learning geometry and motion jointly from such heterogeneous data, SpatialTrackerV2 outperforms existing 3D tracking methods by 30%.
arXiv Detail & Related papers (2025-07-16T17:59:03Z) - Layered Motion Fusion: Lifting Motion Segmentation to 3D in Egocentric Videos [71.24593306228145]
We propose to improve dynamic segmentation in 3D by fusing motion segmentation predictions from a 2D-based model into layered radiance fields.<n>We address this issue through test-time refinement, which helps the model to focus on specific frames, thereby reducing the data complexity.<n>This demonstrates that 3D techniques can enhance 2D analysis even for dynamic phenomena in a challenging and realistic setting.
arXiv Detail & Related papers (2025-06-05T19:46:48Z) - LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors [107.83398512719981]
Single-image 3D reconstruction remains a fundamental challenge in computer vision.<n>Recent advances in Latent Video Diffusion Models offer promising 3D priors learned from large-scale video data.<n>We propose LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency.
arXiv Detail & Related papers (2024-12-12T18:58:42Z) - 3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation [83.98251722144195]
Previous methods on controllable video generation primarily leverage 2D control signals to manipulate object motions.<n>We introduce 3DTrajMaster, a robust controller that regulates multi-entity dynamics in 3D space.<n>We show that 3DTrajMaster sets a new state-of-the-art in both accuracy and generalization for controlling multi-entity 3D motions.
arXiv Detail & Related papers (2024-12-10T18:55:13Z) - DreamScene4D: Dynamic Multi-Object Scene Generation from Monocular Videos [21.93514516437402]
We present DreamScene4D, the first approach to generate 3D dynamic scenes of multiple objects from monocular videos via novel view synthesis.
Our key insight is a "decompose-recompose" approach that factorizes the video scene into the background and object tracks.
We show extensive results on challenging DAVIS, Kubric, and self-captured videos with quantitative comparisons and a user preference study.
arXiv Detail & Related papers (2024-05-03T17:55:34Z) - SpatialTracker: Tracking Any 2D Pixels in 3D Space [71.58016288648447]
We propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection.
Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators.
Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts.
arXiv Detail & Related papers (2024-04-05T17:59:25Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
We propose a self-supervised method to jointly learn 3D motion and depth from monocular videos.
Our system contains a depth estimation module to predict depth, and a new decomposed object-wise 3D motion (DO3D) estimation module to predict ego-motion and 3D object motion.
Our model delivers superior performance in all evaluated settings.
arXiv Detail & Related papers (2024-03-09T12:22:46Z) - Cinematic Behavior Transfer via NeRF-based Differentiable Filming [63.1622492808519]
Existing SLAM methods face limitations in dynamic scenes and human pose estimation often focuses on 2D projections.
We first introduce a reverse filming behavior estimation technique.
We then introduce a cinematic transfer pipeline that is able to transfer various shot types to a new 2D video or a 3D virtual environment.
arXiv Detail & Related papers (2023-11-29T15:56:58Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
We propose a method for jointly estimating the 3D motion, 3D shape, and appearance of highly motion-blurred objects from a video.
Experiments on benchmark datasets demonstrate that our method outperforms previous methods for fast moving object deblurring and 3D reconstruction.
arXiv Detail & Related papers (2021-11-29T11:25:14Z) - Unsupervised object-centric video generation and decomposition in 3D [36.08064849807464]
We propose to model a video as the view seen while moving through a scene with multiple 3D objects and a 3D background.
Our model is trained from monocular videos without any supervision, yet learns to generate coherent 3D scenes containing several moving objects.
arXiv Detail & Related papers (2020-07-07T18:01:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.