Cinematic Behavior Transfer via NeRF-based Differentiable Filming
- URL: http://arxiv.org/abs/2311.17754v1
- Date: Wed, 29 Nov 2023 15:56:58 GMT
- Title: Cinematic Behavior Transfer via NeRF-based Differentiable Filming
- Authors: Xuekun Jiang, Anyi Rao, Jingbo Wang, Dahua Lin, Bo Dai
- Abstract summary: Existing SLAM methods face limitations in dynamic scenes and human pose estimation often focuses on 2D projections.
We first introduce a reverse filming behavior estimation technique.
We then introduce a cinematic transfer pipeline that is able to transfer various shot types to a new 2D video or a 3D virtual environment.
- Score: 63.1622492808519
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the evolving landscape of digital media and video production, the precise
manipulation and reproduction of visual elements like camera movements and
character actions are highly desired. Existing SLAM methods face limitations in
dynamic scenes and human pose estimation often focuses on 2D projections,
neglecting 3D statuses. To address these issues, we first introduce a reverse
filming behavior estimation technique. It optimizes camera trajectories by
leveraging NeRF as a differentiable renderer and refining SMPL tracks. We then
introduce a cinematic transfer pipeline that is able to transfer various shot
types to a new 2D video or a 3D virtual environment. The incorporation of 3D
engine workflow enables superior rendering and control abilities, which also
achieves a higher rating in the user study.
Related papers
- CineMaster: A 3D-Aware and Controllable Framework for Cinematic Text-to-Video Generation [76.72787726497343]
We present CineMaster, a framework for 3D-aware and controllable text-to-video generation.
Our goal is to empower users with comparable controllability as professional film directors.
arXiv Detail & Related papers (2025-02-12T18:55:36Z) - MotionCanvas: Cinematic Shot Design with Controllable Image-to-Video Generation [65.74312406211213]
This paper presents a method that allows users to design cinematic video shots in the context of image-to-video generation.
By connecting insights from classical computer graphics and contemporary video generation techniques, we demonstrate the ability to achieve 3D-aware motion control in I2V synthesis.
arXiv Detail & Related papers (2025-02-06T18:41:04Z) - Learning Human Motion from Monocular Videos via Cross-Modal Manifold Alignment [45.74813582690906]
Learning 3D human motion from 2D inputs is a fundamental task in the realms of computer vision and computer graphics.
We present the Video-to-Motion Generator (VTM), which leverages motion priors through cross-modal latent feature space alignment.
The VTM showcases state-of-the-art performance in reconstructing 3D human motion from monocular videos.
arXiv Detail & Related papers (2024-04-15T06:38:09Z) - SpatialTracker: Tracking Any 2D Pixels in 3D Space [71.58016288648447]
We propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection.
Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators.
Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts.
arXiv Detail & Related papers (2024-04-05T17:59:25Z) - FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses
via Pixel-Aligned Scene Flow [26.528667940013598]
Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning.
Key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion.
We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass.
arXiv Detail & Related papers (2023-05-31T20:58:46Z) - Decoupling Dynamic Monocular Videos for Dynamic View Synthesis [50.93409250217699]
We tackle the challenge of dynamic view synthesis from dynamic monocular videos in an unsupervised fashion.
Specifically, we decouple the motion of the dynamic objects into object motion and camera motion, respectively regularized by proposed unsupervised surface consistency and patch-based multi-view constraints.
arXiv Detail & Related papers (2023-04-04T11:25:44Z) - MoCaNet: Motion Retargeting in-the-wild via Canonicalization Networks [77.56526918859345]
We present a novel framework that brings the 3D motion task from controlled environments to in-the-wild scenarios.
It is capable of body motion from a character in a 2D monocular video to a 3D character without using any motion capture system or 3D reconstruction procedure.
arXiv Detail & Related papers (2021-12-19T07:52:05Z) - Action2video: Generating Videos of Human 3D Actions [31.665831044217363]
We aim to tackle the interesting yet challenging problem of generating videos of diverse and natural human motions from prescribed action categories.
Key issue lies in the ability to synthesize multiple distinct motion sequences that are realistic in their visual appearances.
Action2motionally generates plausible 3D pose sequences of a prescribed action category, which are processed and rendered by motion2video to form 2D videos.
arXiv Detail & Related papers (2021-11-12T20:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.