論文の概要: OSLoPrompt: Bridging Low-Supervision Challenges and Open-Set Domain Generalization in CLIP
- arxiv url: http://arxiv.org/abs/2503.16106v1
- Date: Thu, 20 Mar 2025 12:51:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:49.089671
- Title: OSLoPrompt: Bridging Low-Supervision Challenges and Open-Set Domain Generalization in CLIP
- Title(参考訳): OSLoPrompt: CLIPにおける低スーパービジョンの課題とオープンセットドメインの一般化の橋渡し
- Authors: Mohamad Hassan N C, Divyam Gupta, Mainak Singha, Sai Bhargav Rongali, Ankit Jha, Muhammad Haris Khan, Biplab Banerjee,
- Abstract要約: 低ショットオープンセット領域一般化(LSOSDG)は、オープンセットドメイン一般化(ODG)と低ショット学習を統合する新しいパラダイムである。
提案するOSLOPROMPTは,CLIPのための先進的なプロンプトラーニングフレームワークである。
- 参考スコア(独自算出の注目度): 15.780915391081734
- License:
- Abstract: We introduce Low-Shot Open-Set Domain Generalization (LSOSDG), a novel paradigm unifying low-shot learning with open-set domain generalization (ODG). While prompt-based methods using models like CLIP have advanced DG, they falter in low-data regimes (e.g., 1-shot) and lack precision in detecting open-set samples with fine-grained semantics related to training classes. To address these challenges, we propose OSLOPROMPT, an advanced prompt-learning framework for CLIP with two core innovations. First, to manage limited supervision across source domains and improve DG, we introduce a domain-agnostic prompt-learning mechanism that integrates adaptable domain-specific cues and visually guided semantic attributes through a novel cross-attention module, besides being supported by learnable domain- and class-generic visual prompts to enhance cross-modal adaptability. Second, to improve outlier rejection during inference, we classify unfamiliar samples as "unknown" and train specialized prompts with systematically synthesized pseudo-open samples that maintain fine-grained relationships to known classes, generated through a targeted query strategy with off-the-shelf foundation models. This strategy enhances feature learning, enabling our model to detect open samples with varied granularity more effectively. Extensive evaluations across five benchmarks demonstrate that OSLOPROMPT establishes a new state-of-the-art in LSOSDG, significantly outperforming existing methods.
- Abstract(参考訳): 低ショット領域一般化(LSOSDG)は,低ショット学習とオープンセット領域一般化(ODG)を一体化する新しいパラダイムである。
CLIPのようなモデルを使ったプロンプトベースの手法では、DGが進歩しているが、低データのレシエーション(例:1ショット)ではフェールし、トレーニングクラスに関連するきめ細かいセマンティクスでオープンセットのサンプルを検出する精度に欠ける。
これらの課題に対処するため、我々はCLIPのための先進的なプロンプトラーニングフレームワークであるOSLOPROMPTを提案する。
まず、ソースドメイン間の限られた監督を管理し、DGを改善するために、学習可能なドメインおよびクラスジェネリックな視覚的プロンプトによってサポートされ、モジュール間の適応性を高めることに加えて、適応可能なドメイン固有のキューと視覚的にガイドされた意味的属性を統合するドメインに依存しないプロンプト学習機構を導入する。
第二に,不慣れなサンプルを「未知」と分類し,既成の基盤モデルを用いたターゲットクエリ戦略により生成した,既知のクラスとのきめ細かい関係を維持するような,体系的に合成された擬似オープンなサンプルを用いて,特殊なプロンプトを訓練する。
この戦略は特徴学習を強化し、より効率的な粒度の異なるオープンサンプルの検出を可能にした。
5つのベンチマークの大規模な評価は、OSLOPROMPTがLSOSDGに新しい最先端技術を確立し、既存の手法よりも大幅に優れていることを示している。
関連論文リスト
- Retaining and Enhancing Pre-trained Knowledge in Vision-Language Models with Prompt Ensembling [5.6987175375687995]
グループワイド・プロンプト・アンサンブル(GPE)と呼ばれる新しいプロンプト・アンサンブル学習手法を提案する。
提案手法は,データ分散シフトに対するロバスト性を改善しつつ,新たなドメイン知識を取り入れたCLIPのゼロショット機能の向上を目的としている。
当社のアプローチは,ゼロショット能力を保護しながら,CLIPの適応性を最適化するため,マスク付き注意によるグループ化の促進,モデルの表現を損なうことなく,新たなドメインインサイトをシームレスに統合するための補助的なプロンプトの導入,オリジナルと新しい知識を効果的にマージするアンサンブル学習戦略の3つの戦略に基づいている。
論文 参考訳(メタデータ) (2024-12-10T00:40:31Z) - In the Era of Prompt Learning with Vision-Language Models [1.060608983034705]
ドメイン一般化のためのドメインに依存しない新しい学習戦略であるtextscStyLIP を紹介する。
StyLIPは、スタイルプロジェクタを使用してドメイン固有のプロンプトトークンを学習することで、CLIPsビジョンエンコーダの視覚スタイルとコンテンツを切り離す。
また,CLIPの凍結視覚バックボーンを利用した非教師なし領域適応(DA)のためのAD-CLIPを提案する。
論文 参考訳(メタデータ) (2024-11-07T17:31:21Z) - Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
オープンソースの単一ソースドメインの一般化は、単一のソースドメインを使用して、未知のターゲットドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
本稿では,領域拡大と境界成長に基づく新しい学習手法を提案する。
提案手法は,いくつかの領域横断画像分類データセットにおいて,大幅な改善と最先端性能を実現することができる。
論文 参考訳(メタデータ) (2024-11-05T09:08:46Z) - Unknown Prompt, the only Lacuna: Unveiling CLIP's Potential for Open Domain Generalization [12.126495847808803]
本稿では、視覚言語モデルCLIPのセマンティックな長所を生かしたODG-CLIPを紹介する。
我々はODGを、既知のカテゴリと新しいカテゴリの両方を包含する多クラス分類課題として概念化している。
我々は,CLIPの視覚的埋め込みの忠実度を高めるために,プロンプト空間から派生したクラス識別的知識で画像を注入する。
論文 参考訳(メタデータ) (2024-03-31T15:03:31Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
ドメイン一般化(DG)は、不変の機能を学ぶことによって、目に見えないシナリオに優れた機械学習モデルを作成するための取り組みである。
モデルにドメインレベルとタスク固有の特性を補足する新しい手法を提案する。
このアプローチは、特定の特徴から不変な特徴をより効果的に分離し、一般化を促進することを目的としている。
論文 参考訳(メタデータ) (2024-01-18T04:23:21Z) - Learning Class and Domain Augmentations for Single-Source Open-Domain
Generalization [15.338029608652777]
単一オープンソースのオープンソースドメイン一般化(SS-ODG)は、トレーニング中の監督とテスト中の未ラベルの新規ターゲットドメインによるラベル付きソースドメインの課題に対処する。
本稿では,新しいドメインを同時に合成し,擬似オープンサンプルを生成するSODG-Netという新しいフレームワークを提案する。
提案手法は,新しい計量基準を用いて既知のクラス標本のスタイルを多様化することにより一般化を促進する。
論文 参考訳(メタデータ) (2023-11-05T08:53:07Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - MoP-CLIP: A Mixture of Prompt-Tuned CLIP Models for Domain Incremental
Learning [12.737883740101438]
本稿では,プロンプト調整型CLIPモデル(MoP-CLIP)を用いた新しいDIL手法を提案する。
トレーニング段階では、各ドメインの各クラスの特徴分布をモデル化し、個々のテキストと視覚的プロンプトを学習して、特定のドメインに適応させます。
学習した分布は、与えられたテストサンプルが既知のドメインに属しているかどうかを識別し、分類タスクの正しいプロンプトを選択する。
論文 参考訳(メタデータ) (2023-07-11T18:17:50Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - Semi-Supervised Domain Generalization with Stochastic StyleMatch [90.98288822165482]
実世界のアプリケーションでは、アノテーションのコストが高いため、各ソースドメインから利用可能なラベルはわずかです。
本研究では,より現実的で実践的な半教師付き領域一般化について検討する。
提案手法であるStyleMatchは,擬似ラベルに基づく最先端の半教師付き学習手法であるFixMatchに着想を得たものである。
論文 参考訳(メタデータ) (2021-06-01T16:00:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。