Binarized Mamba-Transformer for Lightweight Quad Bayer HybridEVS Demosaicing
- URL: http://arxiv.org/abs/2503.16134v1
- Date: Thu, 20 Mar 2025 13:32:27 GMT
- Title: Binarized Mamba-Transformer for Lightweight Quad Bayer HybridEVS Demosaicing
- Authors: Shiyang Zhou, Haijin Zeng, Yunfan Lu, Tong Shao, Ke Tang, Yongyong Chen, Jie Liu, Jingyong Su,
- Abstract summary: We propose a lightweight Mamba-based binary neural network for efficient demosaicing of HybridEVS RAW images.<n>Bi-Mamba binarizes all projections while retaining the core Selective Scan in full precision.<n>We conduct quantitative and qualitative experiments to demonstrate the effectiveness of BMTNet in both performance and computational efficiency.
- Score: 21.15110217419682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quad Bayer demosaicing is the central challenge for enabling the widespread application of Hybrid Event-based Vision Sensors (HybridEVS). Although existing learning-based methods that leverage long-range dependency modeling have achieved promising results, their complexity severely limits deployment on mobile devices for real-world applications. To address these limitations, we propose a lightweight Mamba-based binary neural network designed for efficient and high-performing demosaicing of HybridEVS RAW images. First, to effectively capture both global and local dependencies, we introduce a hybrid Binarized Mamba-Transformer architecture that combines the strengths of the Mamba and Swin Transformer architectures. Next, to significantly reduce computational complexity, we propose a binarized Mamba (Bi-Mamba), which binarizes all projections while retaining the core Selective Scan in full precision. Bi-Mamba also incorporates additional global visual information to enhance global context and mitigate precision loss. We conduct quantitative and qualitative experiments to demonstrate the effectiveness of BMTNet in both performance and computational efficiency, providing a lightweight demosaicing solution suited for real-world edge devices. Our codes and models are available at https://github.com/Clausy9/BMTNet.
Related papers
- TransMamba: Fast Universal Architecture Adaption from Transformers to Mamba [88.31117598044725]
We explore cross-architecture training to transfer the ready knowledge in existing Transformer models to alternative architecture Mamba, termed TransMamba.<n>Our approach employs a two-stage strategy to expedite training new Mamba models, ensuring effectiveness in across uni-modal and cross-modal tasks.<n>For cross-modal learning, we propose a cross-Mamba module that integrates language awareness into Mamba's visual features, enhancing the cross-modal interaction capabilities of Mamba architecture.
arXiv Detail & Related papers (2025-02-21T01:22:01Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
We propose a Mamba-inspired Joint Unfolding Network (MiJUN) to overcome the inherent nonlinear and ill-posed characteristics of HSI reconstruction.<n>We introduce an accelerated unfolding network scheme, which reduces the reliance on initial optimization stages.<n>We refine the scanning strategy with Mamba by integrating the tensor mode-$k$ unfolding into the Mamba network.
arXiv Detail & Related papers (2025-01-02T13:56:23Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mamba, as a novel state-space model (SSM), has gained widespread application in natural language processing and computer vision.<n>In this work, we introduce Mamba-SEUNet, an innovative architecture that integrates Mamba with U-Net for SE tasks.
arXiv Detail & Related papers (2024-12-21T13:43:51Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - Bi-Mamba: Towards Accurate 1-Bit State Space Models [28.478762133816726]
Bi-Mamba is a scalable and powerful 1-bit Mamba architecture designed for more efficient large language models.
Bi-Mamba achieves performance comparable to its full-precision counterparts (e.g., FP16 or BF16) and much better accuracy than post-training-binarization (PTB) Mamba baselines.
arXiv Detail & Related papers (2024-11-18T18:59:15Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
We propose ReMamba, which enhances Mamba's ability to comprehend long contexts.<n>ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process.
arXiv Detail & Related papers (2024-08-28T02:47:27Z) - UNetMamba: An Efficient UNet-Like Mamba for Semantic Segmentation of High-Resolution Remote Sensing Images [4.9571046933387395]
UNetMamba is a UNet-like semantic segmentation model based on Mamba.
Experiments demonstrate that UNetMamba outperforms the state-of-the-art methods with mIoU increased by 0.87% on LoveDA and 0.39% on ISPRS Vaihingen.
arXiv Detail & Related papers (2024-08-21T11:53:53Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
We propose a novel hybrid Mamba-Transformer backbone, MambaVision, specifically tailored for vision applications.
We show that equipping the Mamba architecture with self-attention blocks in the final layers greatly improves its capacity to capture long-range spatial dependencies.
For classification on the ImageNet-1K dataset, MambaVision variants achieve state-of-the-art (SOTA) performance in terms of both Top-1 accuracy and throughput.
arXiv Detail & Related papers (2024-07-10T23:02:45Z) - MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs [1.7648680700685022]
Underwater Image Enhancement (UIE) techniques aim to address the problem of underwater image degradation due to light absorption and scattering.
Recent years, both Convolution Neural Network (CNN)-based and Transformer-based methods have been widely explored.
MambaUIE is able to efficiently synthesize global and local information and maintains a very small number of parameters with high accuracy.
arXiv Detail & Related papers (2024-04-22T05:12:11Z) - SPMamba: State-space model is all you need in speech separation [20.168153319805665]
CNN-based speech separation models face local receptive field limitations and cannot effectively capture long time dependencies.
We introduce an innovative speech separation method called SPMamba.
This model builds upon the robust TF-GridNet architecture, replacing its traditional BLSTM modules with bidirectional Mamba modules.
arXiv Detail & Related papers (2024-04-02T16:04:31Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
This paper introduces a novel Mamba-based model, Swin-UMamba, designed specifically for medical image segmentation tasks.
Swin-UMamba demonstrates superior performance with a large margin compared to CNNs, ViTs, and latest Mamba-based models.
arXiv Detail & Related papers (2024-02-05T18:58:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.