論文の概要: Narrowing Class-Wise Robustness Gaps in Adversarial Training
- arxiv url: http://arxiv.org/abs/2503.16179v1
- Date: Thu, 20 Mar 2025 14:24:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:19.958465
- Title: Narrowing Class-Wise Robustness Gaps in Adversarial Training
- Title(参考訳): 対人訓練におけるクラスワイズロバストネスギャップの狭化
- Authors: Fatemeh Amerehi, Patrick Healy,
- Abstract要約: 本稿では,対人訓練が総合的およびクラス固有のパフォーマンスに与える影響について考察する。
トレーニング中のラベリングの強化は、対人ロバスト性を53.50%向上させ、クラス不均衡を5.73%軽減する。
- 参考スコア(独自算出の注目度): 0.23020018305241333
- License:
- Abstract: Efforts to address declining accuracy as a result of data shifts often involve various data-augmentation strategies. Adversarial training is one such method, designed to improve robustness to worst-case distribution shifts caused by adversarial examples. While this method can improve robustness, it may also hinder generalization to clean examples and exacerbate performance imbalances across different classes. This paper explores the impact of adversarial training on both overall and class-specific performance, as well as its spill-over effects. We observe that enhanced labeling during training boosts adversarial robustness by 53.50% and mitigates class imbalances by 5.73%, leading to improved accuracy in both clean and adversarial settings compared to standard adversarial training.
- Abstract(参考訳): データシフトの結果、精度の低下に対処する努力には、さまざまなデータ拡張戦略が伴うことが多い。
逆行訓練は、逆行例によって引き起こされる最悪のケース分布シフトに対する堅牢性を改善するために設計された手法である。
この手法はロバスト性を改善することができるが、実例をきれいにし、異なるクラス間の性能不均衡を悪化させるような一般化を阻害する可能性がある。
本稿では, 対人訓練が総合的, クラス固有のパフォーマンス, および流出効果に与える影響について検討する。
トレーニング中のラベリングの強化は、対向ロバスト性を53.50%向上させ、クラス不均衡を5.73%軽減させ、標準的な対向トレーニングと比較して、クリーンかつ対向的な設定の精度を向上させる。
関連論文リスト
- Criticality Leveraged Adversarial Training (CLAT) for Boosted Performance via Parameter Efficiency [15.211462468655329]
CLATは、パラメータ効率を敵のトレーニングプロセスに導入し、クリーンな精度と敵の堅牢性の両方を改善した。
既存の対数訓練法に応用でき、トレーニング可能なパラメータの数を約95%削減できる。
論文 参考訳(メタデータ) (2024-08-19T17:58:03Z) - DAFA: Distance-Aware Fair Adversarial Training [34.94780532071229]
敵対的攻撃の下では、最悪のクラスからのサンプルに対するモデルの予測の大半は、最悪のクラスと同様のクラスに偏っている。
本稿では,クラス間の類似性を考慮し,頑健な公正性に対処するDAFA手法を提案する。
論文 参考訳(メタデータ) (2024-01-23T07:15:47Z) - Mitigating Accuracy-Robustness Trade-off via Balanced Multi-Teacher Adversarial Distillation [12.39860047886679]
敵対的トレーニングは、敵対的攻撃に対するディープニューラルネットワークの堅牢性を改善するための実践的なアプローチである。
本稿では,B-MTARD(Ba balanced Multi-Teacher Adversarial Robustness Distillation)を導入する。
B-MTARDは、様々な敵攻撃に対して最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-06-28T12:47:01Z) - Boundary Adversarial Examples Against Adversarial Overfitting [4.391102490444538]
敵の訓練アプローチは頑強なオーバーフィッティングに苦しむが、モデルがあまりに長く敵の訓練を受けると、頑健な精度が低下する。
強靭なオーバーフィッティングの効果を軽減するため, 早期停止, 時間的アンサンブル, 体重記憶などの緩和手法が提案されている。
本稿では,これらの緩和アプローチが相互に補完的であるかどうかを,対向訓練性能の向上のために検討する。
論文 参考訳(メタデータ) (2022-11-25T13:16:53Z) - Improving Robust Fairness via Balance Adversarial Training [51.67643171193376]
対人訓練 (AT) 法は, 対人攻撃に対して有効であるが, 異なるクラス間での精度と頑健さの相違が激しい。
本稿では,頑健な公正性問題に対処するために,BAT(Adversarial Training)を提案する。
論文 参考訳(メタデータ) (2022-09-15T14:44:48Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
本稿では,特徴分離性を備えた対人訓練(ATFS)により,クラス内特徴の類似性を向上し,クラス間特徴分散を増大させることができる,新たな対人訓練グラフ(ATG)を提案する。
包括的な実験を通じて、提案したATFSフレームワークがクリーンかつロバストなパフォーマンスを著しく改善することを示した。
論文 参考訳(メタデータ) (2022-05-02T04:04:23Z) - Enhancing Adversarial Robustness for Deep Metric Learning [77.75152218980605]
深層学習モデルの対角的堅牢性を改善する必要がある。
過度にハードな例によるモデル崩壊を避けるため、既存の守備隊はmin-max対逆訓練を中止した。
本研究では, 対人訓練において, 一定の硬度までトレーニング三重奏を効率よく摂動させる硬度操作を提案する。
論文 参考訳(メタデータ) (2022-03-02T22:27:44Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
敵の訓練は、敵の例に対するモデルロバスト性を改善するための最も効果的な手法の1つである。
従来の研究は主にモデルの全体的な堅牢性に焦点を当てており、各クラスの役割に関する詳細な分析はいまだに欠落している。
MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10, ImageNetの6つのベンチマークデータセットに対して, 逆トレーニングの詳細な診断を行う。
対戦型学習におけるより強力な攻撃手法は、主に脆弱なクラスに対するより成功した攻撃から、性能の向上を達成することを観察する。
論文 参考訳(メタデータ) (2021-05-29T07:28:35Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - Adversarial Robustness on In- and Out-Distribution Improves
Explainability [109.68938066821246]
RATIOは、Adversarial Training on In- and Out-distriionを通じて、堅牢性のためのトレーニング手順である。
RATIOはCIFAR10で最先端の$l$-adrialを実現し、よりクリーンな精度を維持している。
論文 参考訳(メタデータ) (2020-03-20T18:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。