VP-NTK: Exploring the Benefits of Visual Prompting in Differentially Private Data Synthesis
- URL: http://arxiv.org/abs/2503.16195v1
- Date: Thu, 20 Mar 2025 14:42:11 GMT
- Title: VP-NTK: Exploring the Benefits of Visual Prompting in Differentially Private Data Synthesis
- Authors: Chia-Yi Hsu, Jia-You Chen, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, Chun-Ying Huang,
- Abstract summary: Differentially private (DP) synthetic data has become the de facto standard for releasing sensitive data.<n>One of the emerging techniques in parameter efficient fine-tuning (PEFT) is visual prompting (VP)<n>We show that VP in conjunction with DP-NTK, a DP generator that exploits the power of the neural tangent kernel (NTK) in training DP generative models, achieves a significant performance boost.
- Score: 48.75967507528161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private (DP) synthetic data has become the de facto standard for releasing sensitive data. However, many DP generative models suffer from the low utility of synthetic data, especially for high-resolution images. On the other hand, one of the emerging techniques in parameter efficient fine-tuning (PEFT) is visual prompting (VP), which allows well-trained existing models to be reused for the purpose of adapting to subsequent downstream tasks. In this work, we explore such a phenomenon in constructing captivating generative models with DP constraints. We show that VP in conjunction with DP-NTK, a DP generator that exploits the power of the neural tangent kernel (NTK) in training DP generative models, achieves a significant performance boost, particularly for high-resolution image datasets, with accuracy improving from 0.644$\pm$0.044 to 0.769. Lastly, we perform ablation studies on the effect of different parameters that influence the overall performance of VP-NTK. Our work demonstrates a promising step forward in improving the utility of DP synthetic data, particularly for high-resolution images.
Related papers
- Ultra-Resolution Adaptation with Ease [62.56434979517156]
We propose a set of key guidelines for ultra-resolution adaptation termed emphURAE.<n>We show that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable.<n>Experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations.
arXiv Detail & Related papers (2025-03-20T16:44:43Z) - Privacy without Noisy Gradients: Slicing Mechanism for Generative Model Training [10.229653770070202]
Training generative models with differential privacy (DP) typically involves injecting noise into gradient updates or adapting the discriminator's training procedure.
We consider the slicing privacy mechanism that injects noise into random low-dimensional projections of the private data.
We present a kernel-based estimator for this divergence, circumventing the need for adversarial training.
arXiv Detail & Related papers (2024-10-25T19:32:58Z) - Efficient Differentially Private Fine-Tuning of Diffusion Models [15.71777343534365]
Fine-tuning large diffusion models with DP-SGD can be very resource-demanding in terms of memory usage and computation.
In this work, we investigate Efficient Fine-Tuning (PEFT) of diffusion models using Low-Dimensional Adaptation (LoDA) with Differential Privacy.
Our source code will be made available on GitHub.
arXiv Detail & Related papers (2024-06-07T21:00:20Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
The integration of Differential Privacy with diffusion models (DMs) presents a promising yet challenging frontier.
Recent developments in this field have highlighted the potential for generating high-quality synthetic data by pre-training on public data.
We propose a strategy optimized for private diffusion models, which minimizes the number of trainable parameters to enhance the privacy-utility trade-off.
arXiv Detail & Related papers (2024-06-03T14:18:04Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - Differentially Private Diffusion Models [46.46256537222917]
We build on the recent success of diffusion models (DMs) and introduce Differentially Private Diffusion Models (DPDMs)
We propose noise multiplicity, a powerful modification of DP-SGD tailored to the training of DMs.
We validate our novel DPDMs on image generation benchmarks and achieve state-of-the-art performance in all experiments.
arXiv Detail & Related papers (2022-10-18T15:20:47Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
We propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks.
In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost.
We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy.
arXiv Detail & Related papers (2020-02-10T10:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.