MathFusion: Enhancing Mathematic Problem-solving of LLM through Instruction Fusion
- URL: http://arxiv.org/abs/2503.16212v1
- Date: Thu, 20 Mar 2025 15:00:41 GMT
- Title: MathFusion: Enhancing Mathematic Problem-solving of LLM through Instruction Fusion
- Authors: Qizhi Pei, Lijun Wu, Zhuoshi Pan, Yu Li, Honglin Lin, Chenlin Ming, Xin Gao, Conghui He, Rui Yan,
- Abstract summary: MathFusion is a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis.<n>MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency.
- Score: 48.443460251524776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, \textbf{MathFusionQA}, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.
Related papers
- RV-Syn: Rational and Verifiable Mathematical Reasoning Data Synthesis based on Structured Function Library [58.404895570822184]
RV-Syn is a novel mathematical Synthesis approach.
It generates graphs as solutions by combining Python-formatted functions from this library.
Based on the constructed graph, we achieve solution-guided logic-aware problem generation.
arXiv Detail & Related papers (2025-04-29T04:42:02Z) - A Survey on Mathematical Reasoning and Optimization with Large Language Models [0.5439020425819]
Recent advancements in Large Language Models (LLMs) have significantly improved AI-driven mathematical reasoning, theorem proving, and optimization techniques.
This survey explores the evolution of mathematical problem-solving in AI, from early statistical learning approaches to modern deep learning and transformer-based methodologies.
arXiv Detail & Related papers (2025-03-22T10:49:32Z) - PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models [59.920971312822736]
We introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems.<n>The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction.<n>Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods.
arXiv Detail & Related papers (2025-03-04T06:32:30Z) - MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task [49.355810887265925]
We introduce MathFimer, a novel framework for mathematical reasoning step expansion.<n>We develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset.<n>We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains.
arXiv Detail & Related papers (2025-02-17T11:22:24Z) - Advancing Math Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages [13.377908992869814]
Problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora.<n>We identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance.
arXiv Detail & Related papers (2025-01-23T12:14:57Z) - Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
Graph-structured challenges are inherently difficult due to their nonlinear and intricate nature.<n>In this study, we propose transforming graphs into images to preserve their higher-order structural features accurately.<n>By combining the innovative paradigm powered by multimodal large language models with simple search techniques, we aim to develop a novel and effective framework.
arXiv Detail & Related papers (2025-01-21T08:28:10Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning [13.728595670907136]
We introduce InfinityMATH, a scalable instruction tuning dataset for programmatic mathematical reasoning.
Fine-tuning experiments with open-source language and code models, such as Llama2 and CodeLlama, demonstrate the practical benefits of InfinityMATH.
arXiv Detail & Related papers (2024-08-09T08:18:20Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
We introduce an extensive mathematics dataset called "MathQuest" sourced from the 11th and 12th standard Mathematics NCERT textbooks.
We conduct fine-tuning experiments with three prominent large language models: LLaMA-2, WizardMath, and MAmmoTH.
Our experiments reveal that among the three models, MAmmoTH-13B emerges as the most proficient, achieving the highest level of competence in solving the presented mathematical problems.
arXiv Detail & Related papers (2024-04-19T08:45:42Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
Large Language Models (LLMs) have driven substantial progress in artificial intelligence.
We propose a novel framework called textbfSEquential subtextbfGoal textbfOptimization (SEGO) to enhance LLMs' ability to solve mathematical problems.
arXiv Detail & Related papers (2023-10-19T17:56:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.