論文の概要: Rapid patient-specific neural networks for intraoperative X-ray to volume registration
- arxiv url: http://arxiv.org/abs/2503.16309v1
- Date: Thu, 20 Mar 2025 16:33:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 22:26:53.227454
- Title: Rapid patient-specific neural networks for intraoperative X-ray to volume registration
- Title(参考訳): 術中X線量登録のための高速患者特異的ニューラルネットワーク
- Authors: Vivek Gopalakrishnan, Neel Dey, David-Dimitris Chlorogiannis, Andrew Abumoussa, Anna M. Larson, Darren B. Orbach, Sarah Frisken, Polina Golland,
- Abstract要約: 2D/3D登録のための患者固有のニューラルネットワークをトレーニングするための、完全に自動化されたフレームワークであるxvrを提案する。
xvrは、物理に基づくシミュレーションを使用して、患者の術前のボリューム画像から豊富な高品質なトレーニングデータを生成する。
実X線データに対する2D/3D登録アルゴリズムの最大評価を行い、xvrが多種多様なデータセットにわたって頑健に一般化されることを見出した。
- 参考スコア(独自算出の注目度): 4.347837200266261
- License:
- Abstract: The integration of artificial intelligence in image-guided interventions holds transformative potential, promising to extract 3D geometric and quantitative information from conventional 2D imaging modalities during complex procedures. Achieving this requires the rapid and precise alignment of 2D intraoperative images (e.g., X-ray) with 3D preoperative volumes (e.g., CT, MRI). However, current 2D/3D registration methods fail across the broad spectrum of procedures dependent on X-ray guidance: traditional optimization techniques require custom parameter tuning for each subject, whereas neural networks trained on small datasets do not generalize to new patients or require labor-intensive manual annotations, increasing clinical burden and precluding application to new anatomical targets. To address these challenges, we present xvr, a fully automated framework for training patient-specific neural networks for 2D/3D registration. xvr uses physics-based simulation to generate abundant high-quality training data from a patient's own preoperative volumetric imaging, thereby overcoming the inherently limited ability of supervised models to generalize to new patients and procedures. Furthermore, xvr requires only 5 minutes of training per patient, making it suitable for emergency interventions as well as planned procedures. We perform the largest evaluation of a 2D/3D registration algorithm on real X-ray data to date and find that xvr robustly generalizes across a diverse dataset comprising multiple anatomical structures, imaging modalities, and hospitals. Across surgical tasks, xvr achieves submillimeter-accurate registration at intraoperative speeds, improving upon existing methods by an order of magnitude. xvr is released as open-source software freely available at https://github.com/eigenvivek/xvr.
- Abstract(参考訳): 画像誘導的介入における人工知能の統合は、複雑な手順の間、従来の2次元画像モダリティから3Dの幾何学的および定量的情報を抽出することを約束する変換ポテンシャルを持つ。
これを達成するには、2Dの術中画像(例えば、X線)と3Dの術前ボリューム(例えば、CT、MRI)を迅速かつ正確にアライメントする必要がある。
しかしながら、現在の2D/3D登録法は、X線誘導に依存した幅広い手順で失敗する: 従来の最適化手法では、各被験者にカスタムパラメータチューニングが必要であり、一方、小さなデータセットで訓練されたニューラルネットワークは、新しい患者に一般化したり、労働集約的な手動アノテーションを必要としたり、臨床上の負担を増大させ、新しい解剖学的標的に先立って適用される。
これらの課題に対処するために、我々は2D/3D登録のための患者固有のニューラルネットワークをトレーニングするための完全に自動化されたフレームワークであるxvrを提案する。
xvrは、物理に基づくシミュレーションを使用して、患者自身の術前のボリューム画像から豊富な高品質のトレーニングデータを生成する。
さらに、xvrは患者1人当たりのトレーニングに5分しかかからないため、緊急介入や計画された処置に適している。
実際のX線データに対する2D/3D登録アルゴリズムの最大の評価を行い、Xvrが複数の解剖学的構造、画像のモダリティ、病院からなる多様なデータセットを頑健に一般化していることを見出した。
外科的作業全体にわたって、xvrは術中速度でサブミリ単位の正確な登録を達成し、既存の手法を桁違いに改善する。
xvrはオープンソースソフトウェアとしてhttps://github.com/eigenvivek/xvr.comで無料で公開されている。
関連論文リスト
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Creating a Digital Twin of Spinal Surgery: A Proof of Concept [68.37190859183663]
手術デジタル化は、現実世界の手術の仮想レプリカを作成するプロセスである。
脊椎外科手術に応用した手術デジタル化のための概念実証(PoC)を提案する。
5台のRGB-Dカメラを外科医の動的3D再構成に、ハイエンドカメラを解剖学の3D再構成に、赤外線ステレオカメラを手術器具追跡に、レーザースキャナーを手術室の3D再構成とデータ融合に使用した。
論文 参考訳(メタデータ) (2024-03-25T13:09:40Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Self-supervised 3D Patient Modeling with Multi-modal Attentive Fusion [32.71972792352939]
3次元患者体モデリングは、スマート・メディカル・スキャンおよび手術室における患者の自動位置決めの成功に不可欠である。
既存のCNNベースのエンドツーエンドの患者モデリングソリューションは、通常、大量の関連するトレーニングデータを必要とするカスタマイズされたネットワーク設計を必要とする。
a) 2次元関節局所化のための注意融合を伴うマルチモーダルキーポイント検出モジュールからなる汎用的なモジュール化された3次元患者モデリング手法を提案する。
本手法の有効性を,公用および臨床用両方のデータを用いた広範囲な患者位置決め実験により実証した。
論文 参考訳(メタデータ) (2024-03-05T18:58:55Z) - Domain adaptation strategies for 3D reconstruction of the lumbar spine using real fluoroscopy data [9.21828361691977]
本研究は整形外科手術における手術ナビゲーション導入における重要な障害に対処するものである。
これは、少数の蛍光画像から脊椎の3次元解剖モデルを生成するためのアプローチを示す。
これまでの合成データに基づく研究の精度に匹敵する84%のF1スコアを達成しました。
論文 参考訳(メタデータ) (2024-01-29T10:22:45Z) - Intraoperative 2D/3D Image Registration via Differentiable X-ray Rendering [5.617649111108429]
DiffPoseは、患者固有のシミュレーションと微分可能な物理ベースのレンダリングを利用して、手動でラベル付けされたデータに頼ることなく正確な2D/3D登録を実現する自己教師型アプローチである。
DiffPoseは手術用データセット全体の術速でサブミリ精度を達成し、既存の教師なしの手法を桁違いに改善し、教師付きベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-12-11T13:05:54Z) - Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
Tissues [52.886545681833596]
LerPlaneは単一視点環境下での手術シーンの高速かつ正確な再構築手法である。
LerPlaneは外科手術を4Dボリュームとして扱い、静的および動的フィールドの明示的な2D平面に分解する。
LerPlaneは静的フィールドを共有し、動的組織モデリングのワークロードを大幅に削減する。
論文 参考訳(メタデータ) (2023-05-31T14:38:35Z) - Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation [3.8215162658168524]
Oral-3Dv2は、単一のパノラマX線画像から3Dラジオロジーを再構成する非逆学習モデルである。
本モデルは,2次元座標を3次元空間内のボクセルの密度値にマッピングすることにより,暗黙的に3次元口腔構造を表現することを学習する。
我々の知る限りでは、これは1枚のパノラマX線画像から3Dラジオグラフィ再構成における非逆学習モデルの最初の作品である。
論文 参考訳(メタデータ) (2023-03-21T18:17:27Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。