論文の概要: Attentional Triple-Encoder Network in Spatiospectral Domains for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2503.16389v1
- Date: Thu, 20 Mar 2025 17:49:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:08.726473
- Title: Attentional Triple-Encoder Network in Spatiospectral Domains for Medical Image Segmentation
- Title(参考訳): 医用画像分割のための空間領域における注意三重エンコーダネットワーク
- Authors: Kristin Qi, Xinhan Di,
- Abstract要約: 本稿では,空間的特徴にCNNを統合したトリプルエンコーダネットワーク,スペクトル特徴にFFC(Fast Fourier Convolution),両領域をまたいだグローバルな関係を捉えるアテンション機構を提案する。
提案手法は,Diceスコアを0.855から0.864に改善し,先行作業よりも優れていた。
- 参考スコア(独自算出の注目度): 4.568925537916471
- License:
- Abstract: Retinal Optical Coherence Tomography (OCT) segmentation is essential for diagnosing pathology. Traditional methods focus on either spatial or spectral domains, overlooking their combined dependencies. We propose a triple-encoder network that integrates CNNs for spatial features, Fast Fourier Convolution (FFC) for spectral features, and attention mechanisms to capture global relationships across both domains. Attention fusion modules integrate convolution and cross-attention to further enhance features. Our method achieves an average Dice score improvement from 0.855 to 0.864, outperforming prior work.
- Abstract(参考訳): 網膜光コヒーレンス・トモグラフィ(OCT)セグメンテーションは病理診断に不可欠である。
伝統的な手法は、空間領域とスペクトル領域の両方に焦点を合わせ、それらの依存関係を見渡す。
本稿では,空間的特徴にCNNを統合したトリプルエンコーダネットワーク,スペクトル特徴にFFC(Fast Fourier Convolution),両領域をまたいだグローバルな関係を捉えるアテンション機構を提案する。
アテンション融合モジュールはコンボリューションとクロスアテンションを統合し、機能をさらに強化する。
提案手法は,Diceスコアを0.855から0.864に改善し,先行作業よりも優れていた。
関連論文リスト
- Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields [19.71033340093199]
本稿では,医療画像のセグメンテーションの限界を克服する新しいアーキテクチャであるspective+Unetを提案する。
このフレームワークは ENLTB という名前の効率的な非局所トランスフォーマーブロックを組み込んでおり、これはカーネル関数近似を利用して、効率的な長距離依存性キャプチャを行う。
ACDCとデータセットに関する実験結果から,提案したパースペクティブ+Unetの有効性が示された。
論文 参考訳(メタデータ) (2024-06-20T07:17:39Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
本稿では,医療画像の正確な分割のために,身体情報とエッジ情報の融合を強化するBEFUnetという,革新的なU字型ネットワークを提案する。
BEFUnetは、新しいローカル・クロス・アテンション・フィーチャー(LCAF)融合モジュール、新しいダブル・レベル・フュージョン(DLF)モジュール、デュアルブランチ・エンコーダの3つの主要モジュールから構成されている。
LCAFモジュールは、2つのモダリティの間に空間的に近接する特徴に対して、局所的な相互注意を選択的に行うことにより、エッジとボディの特徴を効率よく融合させる。
論文 参考訳(メタデータ) (2024-02-13T21:03:36Z) - CAT: Learning to Collaborate Channel and Spatial Attention from
Multi-Information Fusion [23.72040577828098]
本稿では,空間とチャネルのアテンション間の協調を活性化する「CAT」と呼ばれるプラグイン・アンド・プレイアテンション・モジュールを提案する。
具体的には、特徴を訓練可能な係数(コラ因子)として表現し、異なる注意モジュールの寄与を適応的に組み合わせる。
我々のCATは、オブジェクト検出、インスタンスセグメンテーション、画像分類において、既存の最先端の注意機構よりも優れています。
論文 参考訳(メタデータ) (2022-12-13T02:34:10Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - $\Upsilon$-Net: A Spatiospectral Network for Retinal OCT Segmentation [45.84236875366677]
OCT画像のセグメンテーション性能を向上させるために、周波数領域の特徴と画像領域を組み合わせたアーキテクチャである$Upsilon$-Netを提案する。
改善率は, 液分画ダイススコアが13%, 平均ダイススコアが1.9%であった。
論文 参考訳(メタデータ) (2022-04-15T18:51:28Z) - TC-Net: Triple Context Network for Automated Stroke Lesion Segmentation [0.5482532589225552]
本稿では,空間的コンテキスト情報を中心として,新たなネットワークである Triple Context Network (TC-Net) を提案する。
我々のネットワークはオープンデータセットATLASで評価され、最高スコアは0.594、ハウスドルフ距離は27.005mm、平均対称性表面距離は7.137mmである。
論文 参考訳(メタデータ) (2022-02-28T11:12:16Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
病理組織像における教師なし核分割のためのCycle Consistency Panoptic Domain Adaptive Mask R-CNN(CyC-PDAM)アーキテクチャを提案する。
まず,合成画像中の補助的な生成物を除去するための核塗布機構を提案する。
第二に、ドメイン識別器を持つセマンティックブランチは、パンプトレベルのドメイン適応を実現するように設計されている。
論文 参考訳(メタデータ) (2020-05-05T11:08:26Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。