XAttention: Block Sparse Attention with Antidiagonal Scoring
- URL: http://arxiv.org/abs/2503.16428v1
- Date: Thu, 20 Mar 2025 17:59:58 GMT
- Title: XAttention: Block Sparse Attention with Antidiagonal Scoring
- Authors: Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, Song Han,
- Abstract summary: Long-context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity.<n>We introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention.
- Score: 10.517760961650279
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-Context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity. Block-sparse attention mitigates this by focusing computation on critical regions, yet existing methods struggle with balancing accuracy and efficiency due to costly block importance measurements. In this paper, we introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention. XAttention's key innovation is the insight that the sum of antidiagonal values (i.e., from the lower-left to upper-right) in the attention matrix provides a powerful proxy for block importance. This allows for precise identification and pruning of non-essential blocks, resulting in high sparsity and dramatically accelerated inference. Across comprehensive evaluations on demanding long-context benchmarks-including RULER and LongBench for language, VideoMME for video understanding, and VBench for video generation. XAttention achieves accuracy comparable to full attention while delivering substantial computational gains. We demonstrate up to 13.5x acceleration in attention computation. These results underscore XAttention's ability to unlock the practical potential of block sparse attention, paving the way for scalable and efficient deployment of LCTMs in real-world applications. Code is available at https://github.com/mit-han-lab/x-attention.
Related papers
- PowerAttention: Exponentially Scaling of Receptive Fields for Effective Sparse Attention [73.26995918610669]
Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts.<n>We introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension.<n>Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by $5sim 40%$.
arXiv Detail & Related papers (2025-03-05T15:24:11Z) - AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
We propose AttentionPredictor, which is the first learning-based critical token identification approach.<n> AttentionPredictor accurately predicts the attention score while consuming negligible memory.<n>We also propose a cross-token critical cache prefetching framework that hides the token time overhead to accelerate the decoding stage.
arXiv Detail & Related papers (2025-02-06T13:41:46Z) - SparseAccelerate: Efficient Long-Context Inference for Mid-Range GPUs [0.0]
We introduce SparseAccelerate, a dynamic sparse attention method that adapts its sparsity patterns based on input characteristics.<n> Experimental results show that SparseAccelerate achieves up to a 1.04x reduction in Time-To-First-Token (TTTF) latency at 32K tokens.
arXiv Detail & Related papers (2024-12-09T04:27:03Z) - A Stitch in Time Saves Nine: Small VLM is a Precise Guidance for Accelerating Large VLMs [65.00970402080351]
A promising approach to accelerating large vision-language models (VLMs) is using partial information, such as attention maps from specific layers, to assess token importance and prune less essential tokens.
Our study reveals three key insights: (i) Partial attention information is insufficient for accurately identifying critical visual tokens, resulting in suboptimal performance, especially at low token retention ratios; (ii) Global attention information, such as the attention map aggregated across all layers, more effectively preserves essential tokens and maintains comparable performance under aggressive pruning; and (iii) The global attention map aggregated from a small VLM closely resembles that of a large VLM,
arXiv Detail & Related papers (2024-12-04T13:56:44Z) - MAS-Attention: Memory-Aware Stream Processing for Attention Acceleration on Resource-Constrained Edge Devices [24.1144641404561]
We propose a scheme for exact attention inference acceleration on memory-constrained edge accelerators.<n>We show up to 2.75x speedup and 54% reduction in energy consumption as compared to the state-of-the-art attention fusion method (FLAT) in the edge computing scenario.
arXiv Detail & Related papers (2024-11-20T19:44:26Z) - Squeezed Attention: Accelerating Long Context Length LLM Inference [64.11145320159126]
We propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed.
We use K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value.
We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs.
arXiv Detail & Related papers (2024-11-14T18:54:19Z) - Hybrid Dynamic Pruning: A Pathway to Efficient Transformer Inference [1.0919012968294923]
We introduce a novel algorithm-architecture co-design approach that accelerates transformers using head sparsity, block sparsity and approximation opportunities to reduce computations in attention and reduce memory access.
With the observation of the huge redundancy in attention scores and attention heads, we propose a novel integer-based row-balanced block pruning to prune unimportant blocks in the attention matrix at run time.
Also propose integer-based head pruning to detect and prune unimportant heads at an early stage at run time.
arXiv Detail & Related papers (2024-07-17T11:15:16Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
Transformer-based models have emerged as one of the most widely used architectures for natural language processing.<n>These huge models are memory hungry and incur significant inference latency even on cutting edge AI-accelerators.<n>We propose LeanAttention, a scalable technique of computing self-attention for the token-generation phase.
arXiv Detail & Related papers (2024-05-17T00:52:39Z) - Accurate Block Quantization in LLMs with Outliers [0.6138671548064355]
The demand for inference on extremely large scale LLMs has seen enormous growth in recent months.
The problem is aggravated by the exploding raise in the lengths of the sequences being processed.
Various quantization techniques have been proposed that allow accurate quantization for both weights and activations.
arXiv Detail & Related papers (2024-03-29T12:15:06Z) - Unlocking Pixels for Reinforcement Learning via Implicit Attention [61.666538764049854]
We make use of new efficient attention algorithms, recently shown to be highly effective for Transformers.
This allows our attention-based controllers to scale to larger visual inputs, and facilitate the use of smaller patches.
In addition, we propose a new efficient algorithm approximating softmax attention with what we call hybrid random features.
arXiv Detail & Related papers (2021-02-08T17:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.