Human-AI Interaction Design Standards
- URL: http://arxiv.org/abs/2503.16472v2
- Date: Mon, 24 Mar 2025 03:21:12 GMT
- Title: Human-AI Interaction Design Standards
- Authors: Chaoyi Zhao, Wei Xu,
- Abstract summary: Human-AI interaction (HAII) standards are critical to supporting the industrialization of AI technology by following an HCAI approach.<n>Despite their importance, the creation and adoption of HCAI-based interaction design standards face challenges.<n>This chapter provides a comparative analysis of HAII versus traditional human-computer interaction (HCI) and outlines guiding principles for HCAI-based design.
- Score: 7.48545280997737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of artificial intelligence (AI) has significantly transformed human-computer interactions, making it essential to establish robust design standards to ensure effective, ethical, and human-centered AI (HCAI) solutions. Standards serve as the foundation for the adoption of new technologies, and human-AI interaction (HAII) standards are critical to supporting the industrialization of AI technology by following an HCAI approach. These design standards aim to provide clear principles, requirements, and guidelines for designing, developing, deploying, and using AI systems, enhancing the user experience and performance of AI systems. Despite their importance, the creation and adoption of HCAI-based interaction design standards face challenges, including the absence of universal frameworks, the inherent complexity of HAII, and the ethical dilemmas that arise in such systems. This chapter provides a comparative analysis of HAII versus traditional human-computer interaction (HCI) and outlines guiding principles for HCAI-based design. It explores international, regional, national, and industry standards related to HAII design from an HCAI perspective and reviews design guidelines released by leading companies such as Microsoft, Google, and Apple. Additionally, the chapter highlights tools available for implementing HAII standards and presents case studies of human-centered interaction design for AI systems in diverse fields, including healthcare, autonomous vehicles, and customer service. It further examines key challenges in developing HAII standards and suggests future directions for the field. Emphasizing the importance of ongoing collaboration between AI designers, developers, and experts in human factors and HCI, this chapter stresses the need to advance HCAI-based interaction design standards to ensure human-centered AI solutions across various domains.
Related papers
- AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.<n>The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Developing and Deploying Industry Standards for Artificial Intelligence in Education (AIED): Challenges, Strategies, and Future Directions [22.65961106637345]
The adoption of Artificial Intelligence in Education (AIED) holds the promise of revolutionizing educational practices.
The lack of standardized practices in the development and deployment of AIED solutions has led to fragmented ecosystems.
This article aims to address the critical need to develop and implement industry standards in AIED.
arXiv Detail & Related papers (2024-03-13T22:38:08Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - An HCAI Methodological Framework (HCAI-MF): Putting It Into Action to Enable Human-Centered AI [8.094008212925598]
Human-centered artificial intelligence (HCAI) is a design philosophy that prioritizes humans in the design, development, deployment, and use of AI systems.<n>Despite its growing prominence in literature, the lack of methodological guidance for its implementation poses challenges to HCAI practice.<n>This paper proposes a comprehensive HCAI methodological framework (HCAI-MF) comprising five key components.
arXiv Detail & Related papers (2023-11-27T17:40:49Z) - Enabling Human-Centered AI: A Methodological Perspective [10.746728034149989]
Human-centered AI (HCAI) is a design philosophy that advocates prioritizing humans in designing, developing, and deploying intelligent systems.
This paper proposes a comprehensive HCAI framework based on our previous work with integrated components, including design goals, design principles, implementation approaches, interdisciplinary teams, HCAI methods, and HCAI processes.
arXiv Detail & Related papers (2023-11-12T01:31:34Z) - Responsible AI Implementation: A Human-centered Framework for
Accelerating the Innovation Process [0.8481798330936974]
This paper proposes a theoretical framework for responsible artificial intelligence (AI) implementation.
The proposed framework emphasizes a synergistic business technology approach for the agile co-creation process.
The framework emphasizes establishing and maintaining trust throughout the human-centered design and agile development of AI.
arXiv Detail & Related papers (2022-09-15T06:24:01Z) - From Human-Computer Interaction to Human-AI Interaction: New Challenges
and Opportunities for Enabling Human-Centered AI [7.3800748017024755]
We focus on the unique characteristics of AI technology and the differences between non-AI computing systems and AI systems.
We promote the research and application of human-AI interaction (HAII) as an interdisciplinary collaboration.
arXiv Detail & Related papers (2021-05-12T04:30:45Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.