Conversational AI as a Coding Assistant: Understanding Programmers' Interactions with and Expectations from Large Language Models for Coding
- URL: http://arxiv.org/abs/2503.16508v1
- Date: Fri, 14 Mar 2025 15:06:07 GMT
- Title: Conversational AI as a Coding Assistant: Understanding Programmers' Interactions with and Expectations from Large Language Models for Coding
- Authors: Mehmet Akhoroz, Caglar Yildirim,
- Abstract summary: Conversational AI interfaces powered by large language models (LLMs) are increasingly used as coding assistants.<n>This study investigates programmers' usage patterns, perceptions, and interaction strategies when engaging with LLM-driven coding assistants.
- Score: 5.064404027153094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational AI interfaces powered by large language models (LLMs) are increasingly used as coding assistants. However, questions remain about how programmers interact with LLM-based conversational agents, the challenges they encounter, and the factors influencing adoption. This study investigates programmers' usage patterns, perceptions, and interaction strategies when engaging with LLM-driven coding assistants. Through a survey, participants reported both the benefits, such as efficiency and clarity of explanations, and the limitations, including inaccuracies, lack of contextual awareness, and concerns about over-reliance. Notably, some programmers actively avoid LLMs due to a preference for independent learning, distrust in AI-generated code, and ethical considerations. Based on our findings, we propose design guidelines for improving conversational coding assistants, emphasizing context retention, transparency, multimodal support, and adaptability to user preferences. These insights contribute to the broader understanding of how LLM-based conversational agents can be effectively integrated into software development workflows while addressing adoption barriers and enhancing usability.
Related papers
- Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines [9.834055425277874]
This study investigates learner-AI interactions through an educational experiment in which participants receive structured guidance on effective prompting.
To assess user behavior and prompting efficacy, we analyze a dataset of 642 interactions from 107 users.
Our findings provide a deeper understanding of how users engage with Large Language Models and the role of structured prompting guidance in enhancing AI-assisted communication.
arXiv Detail & Related papers (2025-04-10T15:20:43Z) - Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
Large language models (LLMs) excel at a range of tasks through in-context learning (ICL)
We introduce In-Context Contrastive Decoding (ICCD), a novel method that emphasizes input-label mapping.
ICCD emphasizes input-label mapping by contrasting the output distributions between positive and negative in-context examples.
arXiv Detail & Related papers (2025-02-19T14:04:46Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.<n>Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.<n>We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - What You Need is What You Get: Theory of Mind for an LLM-Based Code Understanding Assistant [0.0]
A growing number of tools have used Large Language Models (LLMs) to support developers' code understanding.
In this study, we designed an LLM-based conversational assistant that provides a personalized interaction based on inferred user mental state.
Our results provide insights for researchers and tool builders who want to create or improve LLM-based conversational assistants to support novices in code understanding.
arXiv Detail & Related papers (2024-08-08T14:08:15Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
Large Language Models (LLMs) are used to automate the knowledge tagging task.
We show the strong performance of zero- and few-shot results over math questions knowledge tagging tasks.
By proposing a reinforcement learning-based demonstration retriever, we successfully exploit the great potential of different-sized LLMs.
arXiv Detail & Related papers (2024-06-19T23:30:01Z) - Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training [33.57497419019826]
Action-Based Contrastive Self-Training allows for sample-efficient dialogue policy learning in multi-turn conversation.
ACT demonstrates substantial conversation modeling improvements over standard approaches to supervised fine-tuning and DPO.
arXiv Detail & Related papers (2024-05-31T22:44:48Z) - Why and When LLM-Based Assistants Can Go Wrong: Investigating the
Effectiveness of Prompt-Based Interactions for Software Help-Seeking [5.755004576310333]
Large Language Model (LLM) assistants have emerged as potential alternatives to search methods for helping users navigate software.
LLM assistants use vast training data from domain-specific texts, software manuals, and code repositories to mimic human-like interactions.
arXiv Detail & Related papers (2024-02-12T19:49:58Z) - Exploring Interaction Patterns for Debugging: Enhancing Conversational
Capabilities of AI-assistants [18.53732314023887]
Large Language Models (LLMs) enable programmers to obtain natural language explanations for various software development tasks.
LLMs often leap to action without sufficient context, giving rise to implicit assumptions and inaccurate responses.
In this paper, we draw inspiration from interaction patterns and conversation analysis -- to design Robin, an enhanced conversational AI-assistant for debug.
arXiv Detail & Related papers (2024-02-09T07:44:27Z) - Conversational Assistants in Knowledge-Intensive Contexts: An Evaluation of LLM- versus Intent-based Systems [8.88228247647452]
Large Language Models (LLMs) enable Conversational Assistants (CAs) to converse in a more flexible, human-like manner.
LLMs exhibited better user experience, task completion rate, usability, and perceived performance than intent-based systems.
arXiv Detail & Related papers (2024-02-07T15:39:07Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z) - Using an LLM to Help With Code Understanding [13.53616539787915]
Large language models (LLMs) are revolutionizing the process of writing code.
Our plugin queries OpenAI's GPT-3.5-turbo model with four high-level requests without the user having to write explicit prompts.
We evaluate this system in a user study with 32 participants, which confirms that using our plugin can aid task completion more than web search.
arXiv Detail & Related papers (2023-07-17T00:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.