論文の概要: Earthquake Response Analysis with AI
- arxiv url: http://arxiv.org/abs/2503.16509v1
- Date: Fri, 14 Mar 2025 17:45:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-30 07:31:58.008181
- Title: Earthquake Response Analysis with AI
- Title(参考訳): AIを用いた地震応答解析
- Authors: Deep Patel, Panthadeep Bhattacharjee, Amit Reza, Priodyuti Pradhan,
- Abstract要約: 本研究は, 地震応答解析にTwitterデータを活用する可能性を探るものである。
自然言語処理(NLP)技術を取り入れた機械学習(ML)フレームワークを開発した。
このアプローチは主に、影響を受けた地域を特定するために、ツイートから位置情報を抽出することに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.1712057811511209
- License:
- Abstract: A timely and effective response is crucial to minimize damage and save lives during natural disasters like earthquakes. Microblogging platforms, particularly Twitter, have emerged as valuable real-time information sources for such events. This work explores the potential of leveraging Twitter data for earthquake response analysis. We develop a machine learning (ML) framework by incorporating natural language processing (NLP) techniques to extract and analyze relevant information from tweets posted during earthquake events. The approach primarily focuses on extracting location data from tweets to identify affected areas, generating severity maps, and utilizing WebGIS to display valuable information. The insights gained from this analysis can aid emergency responders, government agencies, humanitarian organizations, and NGOs in enhancing their disaster response strategies and facilitating more efficient resource allocation during earthquake events.
- Abstract(参考訳): 地震などの自然災害時の被害を最小限に抑え、命を救うためには、タイムリーで効果的な対応が不可欠である。
マイクロブログプラットフォーム、特にTwitterは、このようなイベントのための貴重なリアルタイム情報ソースとして登場した。
本研究は, 地震応答解析にTwitterデータを活用する可能性を探るものである。
地震時に投稿されたツイートから関連する情報を抽出・分析するために,自然言語処理(NLP)技術を取り入れた機械学習(ML)フレームワークを開発した。
本手法は, つぶやきから位置情報を抽出し, 被害地域を特定し, 深刻度マップを作成し, 貴重な情報を表示するためにWebGISを利用する。
この分析から得られた知見は、緊急対応者、政府機関、人道団体、NGOが災害対応戦略を強化し、地震時のより効率的な資源配分を促進するのに役立つ。
関連論文リスト
- Harnessing Large Language Models for Disaster Management: A Survey [57.00123968209682]
大規模言語モデル(LLM)は、その例外的な能力で科学研究に革命をもたらし、様々な分野を変革した。
本研究の目的は,災害対策のための高度LLMの開発における専門家コミュニティの指導であり,自然災害に対するレジリエンスを高めることである。
論文 参考訳(メタデータ) (2025-01-12T21:00:50Z) - Public Health in Disaster: Emotional Health and Life Incidents Extraction during Hurricane Harvey [1.433758865948252]
嵐に関連する40万件の公開ツイートのデータセットを収集しました。
BERTベースのモデルを用いて、各ツイートに関連する感情を予測した。
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を統合して分析をさらに改良した。
論文 参考訳(メタデータ) (2024-08-20T18:31:20Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - Natural Disaster Analysis using Satellite Imagery and Social-Media Data
for Emergency Response Situations [0.0]
この研究は、衛星画像分析とTwitterデータ分析という2つの段階に分けられている。
第1段階は、災害前の衛星画像解析である。
第2段階は、災害状況に関する重要な情報で地域をマッピングすることに焦点を当てている。
論文 参考訳(メタデータ) (2023-11-16T15:01:26Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
半教師付き, 少数ショットの学習環境下で, 微粒な災害ツイート分類モデルを提案する。
私たちのモデルであるCrisisMatchは、ラベルなしデータと大量のラベルなしデータを用いて、ツイートを関心の細かいクラスに効果的に分類する。
論文 参考訳(メタデータ) (2023-10-23T07:01:09Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
HurricaneSARCは,意図した皮肉に注釈を付けた15,000ツイートのデータセットである。
私たちの最高のモデルは、データセットで最大0.70F1を得ることができます。
論文 参考訳(メタデータ) (2023-08-16T05:58:12Z) - A New Task and Dataset on Detecting Attacks on Human Rights Defenders [68.45906430323156]
我々は,500のオンラインニュース記事にクラウドソーシングされたアノテーションからなる人権擁護者に対する攻撃(HRDsAttack)を検出するための新しいデータセットを提案する。
アノテーションには、攻撃のタイプと場所に関する詳細な情報と、被害者に関する情報が含まれている。
いくつかのサブタスク上でベースラインモデルをトレーニングし,評価し,注釈付き特性を予測することで,データセットの有用性を実証する。
論文 参考訳(メタデータ) (2023-06-30T14:20:06Z) - Earthquake Impact Analysis Based on Text Mining and Social Media
Analytics [5.949779668853556]
地震は広範囲に深く影響しており、緊急救助活動は災害の範囲と範囲に関するソーシャルメディアの情報から恩恵を受ける可能性がある。
本研究は,早期地震影響解析のためのソーシャルメディアデータを収集・分析するためのテキストマイニング手法を提案する。
論文 参考訳(メタデータ) (2022-12-12T13:51:07Z) - Twitter Data Analysis: Izmir Earthquake Case [0.0]
本研究では,2020年10月に発生したイズミル地震のTwitter投稿を分析した。
この分析にはデータマイニングと自然言語処理(NLP)手法が用いられている。
被災者の希望を共有し,地震後の支援活動に貢献することを目的とした。
論文 参考訳(メタデータ) (2022-12-02T21:30:34Z) - Detecting Damage Building Using Real-time Crowdsourced Images and
Transfer Learning [53.26496452886417]
本稿では,Twitterなどのソーシャルメディアプラットフォームから地震後の建物画像を自動的に抽出する手法を提案する。
トランスファーラーニングと6500枚の手動ラベル付き画像を用いて,現場に損傷のある建物を画像として認識する深層学習モデルを訓練した。
訓練されたモデルは、異なる場所で新たに取得した地震の画像でテストし、トルコのM7.0地震の後、Twitterのフィードでほぼリアルタイムで実行された。
論文 参考訳(メタデータ) (2021-10-12T06:31:54Z) - Improving Community Resiliency and Emergency Response With Artificial
Intelligence [0.05541644538483946]
我々は、ステークホルダーが包括的で関連性があり、信頼できる情報にタイムリーにアクセスできるようにする、多段階の緊急対応ツールを目指しています。
本ツールは, 浸水リスク位置, 道路ネットワーク強度, 浸水マップ, 浸水地や被害インフラを推定するコンピュータビジョンセマンティックセマンティックセマンティックセグメンテーションなど, オープンソースの地理空間データの複数の層を符号化して構成する。
これらのデータレイヤを組み合わせて、緊急時の避難経路の検索や、最初に影響を受けたエリアで最初の応答者のために利用可能な宿泊場所のリストを提供するなど、機械学習アルゴリズムの入力データとして利用する。
論文 参考訳(メタデータ) (2020-05-28T18:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。