論文の概要: KVShare: Semantic-Aware Key-Value Cache Sharing for Efficient Large Language Model Inference
- arxiv url: http://arxiv.org/abs/2503.16525v1
- Date: Mon, 17 Mar 2025 16:43:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:58:36.820952
- Title: KVShare: Semantic-Aware Key-Value Cache Sharing for Efficient Large Language Model Inference
- Title(参考訳): KVShare: 効率的な大規模言語モデル推論のためのセマンティックなキーバリューキャッシュ共有
- Authors: Huan Yang, Renji Zhang, Deyu Zhang,
- Abstract要約: KVShareは、セマンティックな類似性に基づくマルチユーザキーバリュー(KV)キャッシュ共有技術である。
LLM(Large Language Models)とMLLM(Multimodal Large Language Models)の推論効率を向上させるように設計されている。
- 参考スコア(独自算出の注目度): 7.894452711850396
- License:
- Abstract: This paper presents KVShare, a multi-user Key-Value (KV) Cache sharing technology based on semantic similarity, designed to enhance the inference efficiency of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Addressing the limitations of existing prefix caching (strict text prefix matching) and semantic caching (loss of response diversity), KVShare achieves fine-grained KV cache reuse through semantic alignment algorithms and differential editing operations. Experiments on real-world user conversation datasets demonstrate that KVShare improves KV cache hit rates by over 60%, while maintaining output quality comparable to full computation (no significant degradation in BLEU and Rouge-L metrics). This approach effectively reduces GPU resource consumption and is applicable to scenarios with repetitive queries, such as healthcare and education.
- Abstract(参考訳): 本稿では,MLLM(Large Language Models)とMLLM(Multimodal Large Language Models)の推論効率を高めるために,意味的類似性に基づくマルチユーザキーバリュー(KV)キャッシュ共有技術であるKVShareを提案する。
既存のプレフィックスキャッシュ(制限テキストプレフィックスマッチング)とセマンティックキャッシュ(応答多様性の欠如)の制限に対処するため、KVShareはセマンティックアライメントアルゴリズムと差分編集操作を通じて、きめ細かいKVキャッシュの再利用を実現する。
実世界のユーザ会話データセットの実験では、KVShareはKVキャッシュのヒット率を60%以上改善し、フル計算に匹敵する出力品質を維持している(BLEUとRoge-Lメトリクスの大幅な劣化はない)。
このアプローチはGPUリソースの消費を効果的に削減し、医療や教育といった反復的なクエリのシナリオに適用できる。
関連論文リスト
- SCBench: A KV Cache-Centric Analysis of Long-Context Methods [61.025422435235456]
KVキャッシュ中心の視点から長文の手法を評価するベンチマークであるSCBenchを紹介する。
我々は、Gated Linear RNNsやMamba-Attention Hybridsを含む8つのカテゴリの長期コンテキストソリューションについて、広範なKVキャッシュ中心の分析を行う。
本研究は,O(n)メモリとサブO(n2)プリフィルによるスパース符号化が堅牢に動作する一方で,サブO(n)メモリ手法がマルチターンシナリオに悩まされていることを示す。
論文 参考訳(メタデータ) (2024-12-13T17:59:52Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - A Method for Building Large Language Models with Predefined KV Cache Capacity [11.710667043543545]
境界キャッシュ変換器(BCT)は、従来のKVキャッシュの過剰なメモリ消費問題に対処する。
キー値ベクトル列を動的に更新することにより、BCTは限られたキャッシュ容量内で効率的な推論を実現する。
実験の結果,BCTは推論品質を維持しながらメモリ使用量を大幅に削減することがわかった。
論文 参考訳(メタデータ) (2024-11-24T11:30:00Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Keep the Cost Down: A Review on Methods to Optimize LLM' s KV-Cache Consumption [66.97998742151918]
大規模言語モデル(LLM)は、先進的な言語理解によって様々な産業に革命をもたらした。
しかし、その効率性はTransformerアーキテクチャが長いテキストを扱うのに苦労していることに疑問を投げかけられている。
KVキャッシュは、トークン生成の時間的複雑さを2次から線形に変換する、重要なソリューションとして登場した。
論文 参考訳(メタデータ) (2024-07-25T12:56:22Z) - LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference [32.20654044142376]
LOOK-Mは、マルチモーダルKVキャッシュサイズを効率的に削減する、先駆的で微調整のないアプローチである。
最大1.5倍高速なデコードを実現し、また、様々な長いコンテキストマルチモーダルタスクのパフォーマンスを維持または強化する。
論文 参考訳(メタデータ) (2024-06-26T07:44:24Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。