CLAVE: An Adaptive Framework for Evaluating Values of LLM Generated Responses
- URL: http://arxiv.org/abs/2407.10725v1
- Date: Mon, 15 Jul 2024 13:51:37 GMT
- Title: CLAVE: An Adaptive Framework for Evaluating Values of LLM Generated Responses
- Authors: Jing Yao, Xiaoyuan Yi, Xing Xie,
- Abstract summary: We introduce CLAVE, a novel framework which integrates two complementary Large Language Models (LLMs)
This dual-model approach enables calibration with any value systems using 100 human-labeled samples per value type.
We present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) 12+s across diverse domains, covering three major value systems.
- Score: 34.77031649891843
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid progress in Large Language Models (LLMs) poses potential risks such as generating unethical content. Assessing LLMs' values can help expose their misalignment, but relies on reference-free evaluators, e.g., fine-tuned LLMs or close-source ones like GPT-4, to identify values reflected in generated responses. Nevertheless, these evaluators face two challenges in open-ended value evaluation: they should align with changing human value definitions with minimal annotation, against their own bias (adaptability), and detect varying value expressions and scenarios robustly (generalizability). To handle these challenges, we introduce CLAVE, a novel framework which integrates two complementary LLMs, a large one to extract high-level value concepts from a few human labels, leveraging its extensive knowledge and generalizability, and a smaller one fine-tuned on such concepts to better align with human value understanding. This dual-model approach enables calibration with any value systems using <100 human-labeled samples per value type. Then we present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) tuples across diverse domains, covering three major value systems. We benchmark the capabilities of 12+ popular LLM evaluators and analyze their strengths and weaknesses. Our findings reveal that combining fine-tuned small models and prompt-based large ones serves as a superior balance in value evaluation.
Related papers
- Value Compass Leaderboard: A Platform for Fundamental and Validated Evaluation of LLMs Values [76.70893269183684]
Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative.
Existing evaluations focus narrowly on safety risks such as bias and toxicity.
Existing benchmarks are prone to data contamination.
The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment.
arXiv Detail & Related papers (2025-01-13T05:53:56Z) - CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1 is the first open-source textbfall-in-one judge LLM.
CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility.
textbfJudgerBench is a new benchmark that encompasses various subjective evaluation tasks.
arXiv Detail & Related papers (2024-10-21T17:56:51Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)
MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.
It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - LLMs instead of Human Judges? A Large Scale Empirical Study across 20 NLP Evaluation Tasks [106.09361690937618]
There is an increasing trend towards evaluating NLP models with LLMs instead of human judgments.
We provide JUDGE-BENCH, a collection of 20 NLP datasets with human annotations covering a broad range of evaluated properties and types of data.
We evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations.
arXiv Detail & Related papers (2024-06-26T14:56:13Z) - ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models [14.268555410234804]
Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies.
This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in LLMs.
arXiv Detail & Related papers (2024-06-06T16:14:16Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
This work proposes a novel framework, ValueLex, to reconstruct Large Language Models' unique value system from scratch.
Based on Lexical Hypothesis, ValueLex introduces a generative approach to elicit diverse values from 30+ LLMs.
We identify three core value dimensions, Competence, Character, and Integrity, each with specific subdimensions, revealing that LLMs possess a structured, albeit non-human, value system.
arXiv Detail & Related papers (2024-04-19T09:44:51Z) - ValueDCG: Measuring Comprehensive Human Value Understanding Ability of Language Models [10.989615390700113]
We argue that truly understanding values in Large Language Models (LLMs) requires both "know what" and "know why"
We present a comprehensive evaluation metric, ValueDCG, to quantitatively assess the two aspects with an engineering implementation.
arXiv Detail & Related papers (2023-09-30T13:47:55Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
Large Language Models (LLMs) have made it crucial to align their values with those of humans.
We propose a Heterogeneous Value Alignment Evaluation (HVAE) system to assess the success of aligning LLMs with heterogeneous values.
arXiv Detail & Related papers (2023-05-26T02:34:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.