Feature selection strategies for optimized heart disease diagnosis using ML and DL models
- URL: http://arxiv.org/abs/2503.16577v1
- Date: Thu, 20 Mar 2025 09:59:01 GMT
- Title: Feature selection strategies for optimized heart disease diagnosis using ML and DL models
- Authors: Bilal Ahmad, Jinfu Chen, Haibao Chen,
- Abstract summary: This study evaluates the impact of feature selection techniques on the predictive performance of various machine learning (ML) and deep learning (DL) models.<n>Eleven ML/DL models were assessed using metrics such as precision, recall, AUC score, F1-score, and accuracy.<n>Results indicate that MI outperformed other methods, particularly for advanced models like neural networks.
- Score: 4.863856267150165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heart disease remains one of the leading causes of morbidity and mortality worldwide, necessitating the development of effective diagnostic tools to enable early diagnosis and clinical decision-making. This study evaluates the impact of feature selection techniques Mutual Information (MI), Analysis of Variance (ANOVA), and Chi-Square on the predictive performance of various machine learning (ML) and deep learning (DL) models using a dataset of clinical indicators for heart disease. Eleven ML/DL models were assessed using metrics such as precision, recall, AUC score, F1-score, and accuracy. Results indicate that MI outperformed other methods, particularly for advanced models like neural networks, achieving the highest accuracy of 82.3% and recall score of 0.94. Logistic regression (accuracy 82.1%) and random forest (accuracy 80.99%) also demonstrated improved performance with MI. Simpler models such as Naive Bayes and decision trees achieved comparable results with ANOVA and Chi-Square, yielding accuracies of 76.45% and 75.99%, respectively, making them computationally efficient alternatives. Conversely, k Nearest Neighbors (KNN) and Support Vector Machines (SVM) exhibited lower performance, with accuracies ranging between 51.52% and 54.43%, regardless of the feature selection method. This study provides a comprehensive comparison of feature selection methods for heart disease prediction, demonstrating the critical role of feature selection in optimizing model performance. The results offer practical guidance for selecting appropriate feature selection techniques based on the chosen classification algorithm, contributing to the development of more accurate and efficient diagnostic tools for enhanced clinical decision-making in cardiology.
Related papers
- Enhancing stroke disease classification through machine learning models via a novel voting system by feature selection techniques [1.2302586529345994]
Heart disease remains a leading cause of morbidity and mortality worldwide.
We have developed a novel voting system with feature selection techniques to advance heart disease classification.
XGBoost demonstrated exceptional performance, achieving 99% accuracy, precision, F1-Score, 98% recall, and 100% ROC AUC.
arXiv Detail & Related papers (2025-04-01T07:16:49Z) - Advancements In Heart Disease Prediction: A Machine Learning Approach For Early Detection And Risk Assessment [0.0]
This paper comprehends, assess, and analyze the role, relevance, and efficiency of machine learning models in predicting heart disease risks using clinical data.
The Support Vector Machine (SVM) demonstrates the highest accuracy at 91.51%, confirming its superiority among the evaluated models in terms of predictive capability.
arXiv Detail & Related papers (2024-10-16T22:32:19Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Two new feature selection methods based on learn-heuristic techniques for breast cancer prediction: A comprehensive analysis [6.796017024594715]
We suggest two novel feature selection (FS) methods based upon an imperialist competitive algorithm (ICA) and a bat algorithm (BA)
This study aims to enhance diagnostic models' efficiency and present a comprehensive analysis to help clinical physicians make much more precise and reliable decisions than before.
arXiv Detail & Related papers (2024-07-19T19:07:53Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Evaluating Echo State Network for Parkinson's Disease Prediction using
Voice Features [1.2289361708127877]
This study aims to develop a diagnostic model capable of achieving both high accuracy and minimizing false negatives.
Various machine learning methods, including Echo State Networks (ESN), Random Forest, k-nearest Neighbors, Support Vector, Extreme Gradient Boosting, and Decision Tree, are employed and thoroughly evaluated.
ESN consistently maintains a false negative rate of less than 8% in 83% of cases.
arXiv Detail & Related papers (2024-01-28T14:39:43Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.