Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation
- URL: http://arxiv.org/abs/2102.06526v1
- Date: Wed, 10 Feb 2021 15:10:37 GMT
- Title: Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation
- Authors: Luca Pasquini, Antonio Napolitano, Martina Lucignani, Emanuela
Tagliente, Francesco Dellepiane, Maria Camilla Rossi-Espagnet, Matteo
Ritrovato, Antonello Vidiri, Veronica Villani, Giulio Ranazzi, Antonella
Stoppacciaro, Andrea Romano, Alberto Di Napoli, Alessandro Bozzao
- Abstract summary: Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
- Score: 44.02622933605018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiomic models have been shown to outperform clinical data for outcome
prediction in glioblastoma (GBM). However, clinical implementation is limited
by lack of parameters standardization. We aimed to compare nine machine
learning classifiers, with different optimization parameters, to predict
overall survival (OS), isocitrate dehydrogenase (IDH) mutation,
O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal
growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM
patients, based on radiomic features from conventional and advanced MR. 156
adult patients with pathologic diagnosis of GBM were included. Three tumoral
regions were analyzed: contrast-enhancing tumor, necrosis and non-enhancing
tumor, selected by manual segmentation. Radiomic features were extracted with a
custom version of Pyradiomics, and selected through Boruta algorithm. A Grid
Search algorithm was applied when computing 4 times K-fold cross validation
(K=10) to get the highest mean and lowest spread of accuracy. Once optimal
parameters were identified, model performances were assessed in terms of Area
Under The Curve-Receiver Operating Characteristics (AUC-ROC). Metaheuristic and
ensemble classifiers showed the best performance across tasks. xGB obtained
maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation
(71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,6%). Best
performing features shed light on possible correlations between MR and tumor
histology.
Related papers
- Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling [4.1032659987778315]
The high dimensionality of radiomic feature sets, the variability in radiomic feature types and potentially high computational requirements all underscore the need for an effective method to identify the smallest set of predictive features for a given clinical problem.
We develop a methodology and tools to identify and explain the smallest set of predictive radiomic features.
arXiv Detail & Related papers (2024-07-05T23:14:46Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward
precision medicine using MRI and a data-inclusive machine learning algorithm [3.2507684591996036]
Glioblastoma (GBM) is one of the most aggressive and lethal human cancers.
Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models.
We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI.
arXiv Detail & Related papers (2023-12-30T03:28:51Z) - Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients [1.7623658472574557]
Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients.
Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis.
We developed a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage.
arXiv Detail & Related papers (2023-09-13T16:59:50Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Prediction of Rapid Early Progression and Survival Risk with
Pre-Radiation MRI in WHO Grade 4 Glioma Patients [0.5365740459403827]
We investigate the potential of ra-diomics, sophisticated multi-resolution fractal texture features, and different molecular features as a diagnostic and prognostic tool for prediction of REP from non-REP cases.
The prediction of survival for the patients cohort produces precision of 0.881 with standard deviation of 0.056.
The experimental result further shows that mul-ti-resolution fractal texture features perform better than conventional radiomics features for REP and survival outcomes.
arXiv Detail & Related papers (2023-06-28T20:03:18Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - MRI-based classification of IDH mutation and 1p/19q codeletion status of
gliomas using a 2.5D hybrid multi-task convolutional neural network [0.18374319565577152]
Isocitrate dehydrogenase mutation and 1p/19q codeletion status are important prognostic markers for glioma.
Our goal was to develop artificial intelligence-based methods to non-invasively determine these molecular alterations from MRI.
A 2.5D hybrid convolutional neural network was proposed to simultaneously localize the tumor and classify its molecular status.
arXiv Detail & Related papers (2022-10-07T18:46:39Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.