論文の概要: Aligning Text-to-Music Evaluation with Human Preferences
- arxiv url: http://arxiv.org/abs/2503.16669v1
- Date: Thu, 20 Mar 2025 19:31:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:29.706310
- Title: Aligning Text-to-Music Evaluation with Human Preferences
- Title(参考訳): 人選好によるテキスト・音楽評価の調整
- Authors: Yichen Huang, Zachary Novack, Koichi Saito, Jiatong Shi, Shinji Watanabe, Yuki Mitsufuji, John Thickstun, Chris Donahue,
- Abstract要約: 本稿では,TTM(生成音響テキスト・ツー・ミュージック)モデルの評価のための基準ベース分散指標の設計空間について検討する。
私たちは、合成データと人間の嗜好データの両方に標準のFAD設定が矛盾しているだけでなく、既存の指標のほとんどすべてがデシデラタを効果的に捉えていないことに気付きました。
我々は,自己教師型音声埋め込みモデルから表現に基づいて計算したMAUVE Audio Divergence(MAD)を提案する。
- 参考スコア(独自算出の注目度): 63.08368388389259
- License:
- Abstract: Despite significant recent advances in generative acoustic text-to-music (TTM) modeling, robust evaluation of these models lags behind, relying in particular on the popular Fr\'echet Audio Distance (FAD). In this work, we rigorously study the design space of reference-based divergence metrics for evaluating TTM models through (1) designing four synthetic meta-evaluations to measure sensitivity to particular musical desiderata, and (2) collecting and evaluating on MusicPrefs, the first open-source dataset of human preferences for TTM systems. We find that not only is the standard FAD setup inconsistent on both synthetic and human preference data, but that nearly all existing metrics fail to effectively capture desiderata, and are only weakly correlated with human perception. We propose a new metric, the MAUVE Audio Divergence (MAD), computed on representations from a self-supervised audio embedding model. We find that this metric effectively captures diverse musical desiderata (average rank correlation 0.84 for MAD vs. 0.49 for FAD and also correlates more strongly with MusicPrefs (0.62 vs. 0.14).
- Abstract(参考訳): 生成音響テキスト・トゥ・ミュージック(TTM)モデリングの進歩にもかかわらず、これらのモデルの堅牢な評価は遅れており、特にポピュラーなFr'echet Audio Distance (FAD)に依存している。
本研究では,TTMモデル評価のための参照型分散指標の設計空間を,(1)特定の音楽デシデラタに対する感度を測定するための4つのメタ評価を設計し,(2)TTMシステムのための人間の好みのオープンソースデータセットであるMusicPrefsを収集・評価することにより,厳密に研究する。
我々は、合成データと人間の嗜好データの両方において標準のFAD設定が矛盾しているだけでなく、既存の指標のほとんど全てがデシダラタを効果的に捉えることができず、人間の知覚と弱い相関しか持たないことを発見した。
我々は,自己教師型音声埋め込みモデルから表現に基づいて計算したMAUVE Audio Divergence(MAD)を提案する。
その結果,この尺度は多種多様な音楽デシラタ(MADとFADの0.49の平均ランク相関0.84)を効果的に捉えることができ,さらにMusicPrefs(0.62 vs. 0.14)と相関することがわかった。
関連論文リスト
- Machine Learning Framework for Audio-Based Content Evaluation using MFCC, Chroma, Spectral Contrast, and Temporal Feature Engineering [0.0]
そこで本研究では,YouTube上の音楽カバーの音声サンプルと,オリジナル曲の音声とユーザコメントからの感情スコアを含むデータセットを構築した。
我々のアプローチは、広範囲な事前処理、音声信号を30秒のウィンドウに分割し、高次元の特徴表現を抽出することである。
回帰モデルを用いて感情スコアを0-100スケールで予測し,それぞれ3.420,5.482,2.783,4.212の根平均二乗誤差(RMSE)値を達成する。
論文 参考訳(メタデータ) (2024-10-31T20:26:26Z) - SONAR: A Synthetic AI-Audio Detection Framework and Benchmark [59.09338266364506]
SONARはAI-Audio Detection FrameworkとBenchmarkの合成である。
最先端のAI合成聴覚コンテンツを識別するための総合的な評価を提供することを目的としている。
従来のモデルとファンデーションベースのディープフェイク検出システムの両方で、AIオーディオ検出を均一にベンチマークする最初のフレームワークである。
論文 参考訳(メタデータ) (2024-10-06T01:03:42Z) - Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data [69.7174072745851]
音声分類データセットを合成データで拡張する新しい手法であるSynthioを提案する。
最初の課題を克服するために、好みの最適化を用いて、T2Aモデルの世代と小規模データセットを整列する。
2つ目の課題に対処するために,大規模言語モデルの推論能力を活用する新しいキャプション生成手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T22:05:36Z) - Serenade: A Model for Human-in-the-loop Automatic Chord Estimation [1.6385815610837167]
そこで本研究では,Human-in-the-loopアプローチにより,モデルのみのアプローチよりも高調波解析性能が向上することを示す。
我々は,ポピュラー音楽のデータセットを用いてモデル評価を行い,本手法を用いることで,モデルのみのアプローチよりも高調波解析性能が向上することを示す。
論文 参考訳(メタデータ) (2023-10-17T11:31:29Z) - Unsupervised evaluation of GAN sample quality: Introducing the TTJac
Score [5.1359892878090845]
データフリーで個々の合成画像の忠実度を測定するために「TTJac score」を提案する。
FFHQ, AFHQ-Wild, LSUN-Cars, LSUN-Horseデータセット上でのStyleGAN 2およびStyleGAN 2 ADAモデルに適用した実験結果を示す。
論文 参考訳(メタデータ) (2023-08-31T19:55:50Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - RoBLEURT Submission for the WMT2021 Metrics Task [72.26898579202076]
本稿では,共有メトリクスタスクであるRoBLEURTについて紹介する。
我々のモデルは10対の英語言語対のうち8対でWMT 2020の人間のアノテーションと最先端の相関に達する。
論文 参考訳(メタデータ) (2022-04-28T08:49:40Z) - A Perceptual Measure for Evaluating the Resynthesis of Automatic Music
Transcriptions [10.957528713294874]
本研究では,室内音響や楽器などの環境要因が変化した場合の演奏の知覚に焦点を当てた。
我々は「演出」の概念と「芸術的意図」を表現する「解釈」の概念を区別することを提案する。
論文 参考訳(メタデータ) (2022-02-24T18:09:22Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
本稿では,条件付き変分オートエンコーダ(CVAE)を用いた変分パラメトリックシンセサイザVaPar Synthを提案する。
提案するモデルの性能は,ピッチを柔軟に制御した楽器音の再構成と生成によって実証する。
論文 参考訳(メタデータ) (2020-03-30T16:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。