GauRast: Enhancing GPU Triangle Rasterizers to Accelerate 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2503.16681v2
- Date: Thu, 10 Apr 2025 19:43:24 GMT
- Title: GauRast: Enhancing GPU Triangle Rasterizers to Accelerate 3D Gaussian Splatting
- Authors: Sixu Li, Ben Keller, Yingyan Celine Lin, Brucek Khailany,
- Abstract summary: 3D Gaussian Splatting (3DGS) is an emerging high-quality 3D rendering method.<n>Previous efforts to accelerate 3DGS rely on dedicated accelerators that require substantial integration overhead and hardware costs.<n>This work proposes an acceleration strategy that leverages the similarities between the 3DGS pipeline and the highly optimized conventional graphics pipeline.
- Score: 3.275890592583965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D intelligence leverages rich 3D features and stands as a promising frontier in AI, with 3D rendering fundamental to many downstream applications. 3D Gaussian Splatting (3DGS), an emerging high-quality 3D rendering method, requires significant computation, making real-time execution on existing GPU-equipped edge devices infeasible. Previous efforts to accelerate 3DGS rely on dedicated accelerators that require substantial integration overhead and hardware costs. This work proposes an acceleration strategy that leverages the similarities between the 3DGS pipeline and the highly optimized conventional graphics pipeline in modern GPUs. Instead of developing a dedicated accelerator, we enhance existing GPU rasterizer hardware to efficiently support 3DGS operations. Our results demonstrate a 23$\times$ increase in processing speed and a 24$\times$ reduction in energy consumption, with improvements yielding 6$\times$ faster end-to-end runtime for the original 3DGS algorithm and 4$\times$ for the latest efficiency-improved pipeline, achieving 24 FPS and 46 FPS respectively. These enhancements incur only a minimal area overhead of 0.2\% relative to the entire SoC chip area, underscoring the practicality and efficiency of our approach for enabling 3DGS rendering on resource-constrained platforms.
Related papers
- DashGaussian: Optimizing 3D Gaussian Splatting in 200 Seconds [71.37326848614133]
We propose DashGaussian, a scheduling scheme over the optimization complexity of 3DGS.
We show that our method accelerates the optimization of various 3DGS backbones by 45.7% on average.
arXiv Detail & Related papers (2025-03-24T07:17:27Z) - LiteGS: A High-Performance Modular Framework for Gaussian Splatting Training [0.21756081703275998]
LiteGS is a high-performance and modular framework that enhances both the efficiency and usability of Gaussian splatting.<n>LiteGS achieves a 3.4x speedup over the original 3DGS implementation while reducing memory usage by approximately 30%.
arXiv Detail & Related papers (2025-03-03T05:52:02Z) - GS-Cache: A GS-Cache Inference Framework for Large-scale Gaussian Splatting Models [23.135271367322034]
Rendering large-scale 3D Gaussian Splatting (3DGS) model faces significant challenges in achieving real-time, high-fidelity performance on consumer-grade devices.<n>We propose GS-Cache, an end-to-end framework that seamlessly integrates 3DGS's advanced representation with a highly optimized rendering system.
arXiv Detail & Related papers (2025-02-20T14:01:17Z) - Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives [60.217580865237835]
3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians.<n>We identify and address two key inefficiencies in 3D-GS, achieving substantial improvements in rendering speed, model size, and training time.<n>Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $6.71times$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets with $10.6times$ fewer primitives than 3
arXiv Detail & Related papers (2024-11-30T20:25:56Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.
3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - Multi-GPU RI-HF Energies and Analytic Gradients $-$ Towards High Throughput Ab Initio Molecular Dynamics [0.0]
This article presents an optimized algorithm and implementation for calculating resolution-of-the-identity Hartree-Fock energies and analytic gradients using multiple Graphics Processing Units (GPUs)
The algorithm is especially designed for high throughput emphab initio molecular dynamics simulations of small and medium size molecules (10-100 atoms)
arXiv Detail & Related papers (2024-07-29T00:14:10Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.<n>We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - 3D-HGS: 3D Half-Gaussian Splatting [5.766096863155448]
Photo-realistic image rendering from scene 3D reconstruction is a fundamental problem in 3D computer vision.<n>We introduce 3D Half-Gaussian kernels, which can be used as a plug-and-play kernel.
arXiv Detail & Related papers (2024-06-04T19:04:29Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering [103.32717396287751]
We propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes.
A neuralvoxel encoding algorithm inspired by HexPlane is proposed to efficiently build features from 4D neural voxels.
Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$times$800 resolution on an 3090 GPU.
arXiv Detail & Related papers (2023-10-12T17:21:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.