SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition
- URL: http://arxiv.org/abs/2401.17857v4
- Date: Sun, 19 Jan 2025 08:31:42 GMT
- Title: SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition
- Authors: Xu Hu, Yuxi Wang, Lue Fan, Chuanchen Luo, Junsong Fan, Zhen Lei, Qing Li, Junran Peng, Zhaoxiang Zhang,
- Abstract summary: 3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.
We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.
Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
- Score: 66.56357905500512
- License:
- Abstract: 3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis, benefiting from its high-quality rendering results and real-time rendering speed. However, the 3D Gaussians learned by 3D-GS have ambiguous structures without any geometry constraints. This inherent issue in 3D-GS leads to a rough boundary when segmenting individual objects. To remedy these problems, we propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS to improve segmentation accuracy while preserving segmentation speed. Specifically, we introduce a Gaussian Decomposition scheme, which ingeniously utilizes the special structure of 3D Gaussian, finds out, and then decomposes the boundary Gaussians. Moreover, to achieve fast interactive 3D segmentation, we introduce a novel training-free pipeline by lifting a 2D foundation model to 3D-GS. Extensive experiments demonstrate that our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
Related papers
- Lifting by Gaussians: A Simple, Fast and Flexible Method for 3D Instance Segmentation [1.4307447044389736]
We introduce a novel approach for open-world instance segmentation of 3D Gaussian Splatted Radiance Fields (3DGS)
Our technique achieves superior semantic segmentation for 2D semantic novel view synthesis and 3D asset extraction results.
arXiv Detail & Related papers (2025-01-31T21:30:59Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - 3D-HGS: 3D Half-Gaussian Splatting [5.766096863155448]
Photo-realistic 3D Reconstruction is a fundamental problem in 3D computer vision.
We propose to employ 3D Half-Gaussian (3D-HGS) kernels, which can be used as a plug-and-play kernel.
arXiv Detail & Related papers (2024-06-04T19:04:29Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
We introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image.
AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization.
We propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module.
arXiv Detail & Related papers (2024-01-08T18:56:33Z) - 2D-Guided 3D Gaussian Segmentation [15.139488857163064]
This paper introduces a 3D Gaussian segmentation method implemented with 2D segmentation as supervision.
This approach uses input 2D segmentation maps to guide the learning of the added 3D Gaussian semantic information.
Experiments show that our method can achieve comparable performances on mIOU and mAcc for multi-object segmentation.
arXiv Detail & Related papers (2023-12-26T13:28:21Z) - Segment Any 3D Gaussians [85.93694310363325]
This paper presents SAGA, a highly efficient 3D promptable segmentation method based on 3D Gaussian Splatting (3D-GS)
Given 2D visual prompts as input, SAGA can segment the corresponding 3D target represented by 3D Gaussians within 4 ms.
We show that SAGA achieves real-time multi-granularity segmentation with quality comparable to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-01T17:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.