Fast online node labeling with graph subsampling
- URL: http://arxiv.org/abs/2503.16755v1
- Date: Fri, 21 Mar 2025 00:13:16 GMT
- Title: Fast online node labeling with graph subsampling
- Authors: Yushen Huang, Ertai Luo, Reza Babenezhad, Yifan Sun,
- Abstract summary: Graph-based methods, such as node prediction, aim for computational efficiency regardless of graph size.<n>In this paper, we consider an emphonline subsampled APPR method, where messages are intentionally dropped at random.<n>We use tools from graph sparsifiers and matrix linear algebra to give approximation bounds on the graph's spectral properties.
- Score: 4.259367043722417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large data applications rely on storing data in massive, sparse graphs with millions to trillions of nodes. Graph-based methods, such as node prediction, aim for computational efficiency regardless of graph size. Techniques like localized approximate personalized page rank (APPR) solve sparse linear systems with complexity independent of graph size, but is in terms of the maximum node degree, which can be much larger in practice than the average node degree for real-world large graphs. In this paper, we consider an \emph{online subsampled APPR method}, where messages are intentionally dropped at random. We use tools from graph sparsifiers and matrix linear algebra to give approximation bounds on the graph's spectral properties ($O(1/\epsilon^2)$ edges), and node classification performance (added $O(n\epsilon)$ overhead).
Related papers
- Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNs iteratively update each node's representation in an input graph by aggregating messages from the node's neighbors.<n>MPNNs might quickly become prohibitive for large graphs provided they are not very sparse.<n>We propose approximating the input graph as an intersecting community graph (ICG) -- a combination of intersecting cliques.
arXiv Detail & Related papers (2024-05-31T09:26:26Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Graph Mixup with Soft Alignments [49.61520432554505]
We study graph data augmentation by mixup, which has been used successfully on images.
We propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments.
arXiv Detail & Related papers (2023-06-11T22:04:28Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Boosting Graph Embedding on a Single GPU [3.093890460224435]
We present GOSH, a GPU-based tool for embedding large-scale graphs with minimum hardware constraints.
It employs a novel graph coarsening algorithm to enhance the impact of updates and minimize the work for embedding.
It also incorporates a decomposition schema that enables any arbitrarily large graph to be embedded with a single GPU.
arXiv Detail & Related papers (2021-10-19T15:25:04Z) - GLAM: Graph Learning by Modeling Affinity to Labeled Nodes for Graph
Neural Networks [0.0]
We propose a semi-supervised graph learning method for cases when there are no graphs available.
This method learns a graph as a convex combination of the unsupervised kNN graph and a supervised label-affinity graph.
Our experiments suggest that this approach gives close to or better performance (up to 1.5%), while being simpler and faster (up to 70x) to train, than state-of-the-art graph learning methods.
arXiv Detail & Related papers (2021-02-20T17:56:52Z) - FeatGraph: A Flexible and Efficient Backend for Graph Neural Network
Systems [23.258185277825888]
FeatGraph provides a flexible programming interface to express diverse GNN models.
FeatGraph speeds up end-to-end GNN training and inference by up to 32x on CPU and 7x on GPU.
arXiv Detail & Related papers (2020-08-26T03:17:05Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets.
We propose a new GCN variant whose three-part filter space is targeted at dense graphs.
arXiv Detail & Related papers (2020-08-03T08:48:41Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs.
In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings.
We show that training PPRGo and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph.
arXiv Detail & Related papers (2020-07-03T09:30:07Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.