Learning Part Knowledge to Facilitate Category Understanding for Fine-Grained Generalized Category Discovery
- URL: http://arxiv.org/abs/2503.16782v1
- Date: Fri, 21 Mar 2025 01:37:51 GMT
- Title: Learning Part Knowledge to Facilitate Category Understanding for Fine-Grained Generalized Category Discovery
- Authors: Enguang Wang, Zhimao Peng, Zhengyuan Xie, Haori Lu, Fei Yang, Xialei Liu,
- Abstract summary: Generalized Category Discovery (GCD) aims to classify unlabeled data containing both seen and novel categories.<n>We propose incorporating part knowledge to address fine-grained GCD, which introduces two key challenges.
- Score: 10.98097145569408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalized Category Discovery (GCD) aims to classify unlabeled data containing both seen and novel categories. Although existing methods perform well on generic datasets, they struggle in fine-grained scenarios. We attribute this difficulty to their reliance on contrastive learning over global image features to automatically capture discriminative cues, which fails to capture the subtle local differences essential for distinguishing fine-grained categories. Therefore, in this paper, we propose incorporating part knowledge to address fine-grained GCD, which introduces two key challenges: the absence of annotations for novel classes complicates the extraction of the part features, and global contrastive learning prioritizes holistic feature invariance, inadvertently suppressing discriminative local part patterns. To address these challenges, we propose PartGCD, including 1) Adaptive Part Decomposition, which automatically extracts class-specific semantic parts via Gaussian Mixture Models, and 2) Part Discrepancy Regularization, enforcing explicit separation between part features to amplify fine-grained local part distinctions. Experiments demonstrate state-of-the-art performance across multiple fine-grained benchmarks while maintaining competitiveness on generic datasets, validating the effectiveness and robustness of our approach.
Related papers
- Component Adaptive Clustering for Generalized Category Discovery [13.322393552334063]
We propose a cluster-centric contrastive learning framework that incorporates Adaptive Slot Attention (AdaSlot) into the Generalized Category Discovery (GCD) framework.<n>AdaSlot dynamically determines the optimal number of slots based on data complexity, removing the need for predefined slot counts.<n>Our method captures both instance-specific and spatially clustered features, improving class discovery in open-world scenarios.
arXiv Detail & Related papers (2025-07-02T13:41:30Z) - Segment Concealed Objects with Incomplete Supervision [63.637733655439334]
Incompletely-Supervised Concealed Object (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments.<n>This task remains highly challenging due to the limited supervision provided by the incompletely annotated training data.<n>In this paper, we introduce the first unified method for ISCOS to address these challenges.
arXiv Detail & Related papers (2025-06-10T16:25:15Z) - Generalized Category Discovery in Event-Centric Contexts: Latent Pattern Mining with LLMs [34.06878654462158]
We introduce Event-Centric GCD, characterized by long, complex narratives and highly imbalanced class distributions.<n>We propose PaMA, a framework leveraging LLMs to extract and refine event patterns for improved cluster-class alignment.<n> Evaluations on two EC-GCD benchmarks, including a newly constructed Scam Report dataset, demonstrate that PaMA outperforms prior methods with up to 12.58% H-score gains.
arXiv Detail & Related papers (2025-05-29T10:02:04Z) - One-shot In-context Part Segmentation [97.77292483684877]
We present the One-shot In-context Part (OIParts) framework to tackle the challenges of part segmentation.<n>Our framework offers a novel approach to part segmentation that is training-free, flexible, and data-efficient.<n>We have achieved remarkable segmentation performance across diverse object categories.
arXiv Detail & Related papers (2025-03-03T03:50:54Z) - Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.<n>Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.<n>We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - XCon: Learning with Experts for Fine-grained Category Discovery [4.787507865427207]
We present a novel method called Expert-Contrastive Learning (XCon) to help the model to mine useful information from the images.
Experiments on fine-grained datasets show a clear improved performance over the previous best methods, indicating the effectiveness of our method.
arXiv Detail & Related papers (2022-08-03T08:03:12Z) - Task-specific Inconsistency Alignment for Domain Adaptive Object
Detection [38.027790951157705]
Detectors trained with massive labeled data often exhibit dramatic performance degradation in certain scenarios with data distribution gap.
We propose Task-specific Inconsistency Alignment (TIA), by developing a new alignment mechanism in separate task spaces.
TIA demonstrates superior results on various scenarios to the previous state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:36:33Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Channel DropBlock: An Improved Regularization Method for Fine-Grained
Visual Classification [58.07257910065007]
Existing approaches mainly tackle this problem by introducing attention mechanisms to locate the discriminative parts or feature encoding approaches to extract the highly parameterized features in a weakly-supervised fashion.
In this work, we propose a lightweight yet effective regularization method named Channel DropBlock (CDB) in combination with two alternative correlation metrics, to address this problem.
arXiv Detail & Related papers (2021-06-07T09:03:02Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings [25.137859989323537]
We propose an effective Unsupervised Domain Adaptation (UDA) strategy, based on a feature clustering method.
We introduce two novel learning objectives to enhance the discriminative clustering performance.
arXiv Detail & Related papers (2020-11-25T10:06:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.