The Deployment of End-to-End Audio Language Models Should Take into Account the Principle of Least Privilege
- URL: http://arxiv.org/abs/2503.16833v1
- Date: Fri, 21 Mar 2025 04:03:59 GMT
- Title: The Deployment of End-to-End Audio Language Models Should Take into Account the Principle of Least Privilege
- Authors: Luxi He, Xiangyu Qi, Michel Liao, Inyoung Cheong, Prateek Mittal, Danqi Chen, Peter Henderson,
- Abstract summary: End-to-end audio language models (Audio LMs) process speech directly instead of relying on a separate transcription step.<n>This shift preserves detailed information, such as intonation or the presence of multiple speakers, that would otherwise be lost in transcription.<n>It also introduces new safety risks, including the potential misuse of speaker identity cues and other sensitive vocal attributes.
- Score: 50.6597575004019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We are at a turning point for language models that accept audio input. The latest end-to-end audio language models (Audio LMs) process speech directly instead of relying on a separate transcription step. This shift preserves detailed information, such as intonation or the presence of multiple speakers, that would otherwise be lost in transcription. However, it also introduces new safety risks, including the potential misuse of speaker identity cues and other sensitive vocal attributes, which could have legal implications. In this position paper, we urge a closer examination of how these models are built and deployed. We argue that the principle of least privilege should guide decisions on whether to deploy cascaded or end-to-end models. Specifically, evaluations should assess (1) whether end-to-end modeling is necessary for a given application; and (2), the appropriate scope of information access. Finally, We highlight related gaps in current audio LM benchmarks and identify key open research questions, both technical and policy-related, that must be addressed to enable the responsible deployment of end-to-end Audio LMs.
Related papers
- Baichuan-Audio: A Unified Framework for End-to-End Speech Interaction [9.101978573666546]
Baichuan-Audio is an end-to-end audio large language model that seamlessly integrates audio understanding and generation.<n>It features a text-guided aligned speech generation mechanism, enabling real-time speech interaction with both comprehension and generation capabilities.
arXiv Detail & Related papers (2025-02-24T15:16:34Z) - VoxEval: Benchmarking the Knowledge Understanding Capabilities of End-to-End Spoken Language Models [32.086847480051084]
We present VoxEval, a novel SpeechQA benchmark that assesses knowledge understanding through pure speech interactions.<n>Our benchmark 1) maintains speech format for both inputs and outputs, 2) evaluates model robustness across diverse input audio conditions, and 3) pioneers the assessment of complex tasks like mathematical reasoning in spoken format.
arXiv Detail & Related papers (2025-01-09T04:30:12Z) - MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models [59.80042864360884]
Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately.
This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions.
arXiv Detail & Related papers (2024-11-27T09:01:08Z) - Recent Advances in Speech Language Models: A Survey [45.968078636811356]
Speech Language Models (SpeechLMs) are end-to-end models that generate speech without converting from text.<n>This survey paper provides the first comprehensive overview of recent methodologies for constructing SpeechLMs.
arXiv Detail & Related papers (2024-10-01T21:48:12Z) - Enhancing Temporal Understanding in Audio Question Answering for Large Audio Language Models [0.9285295512807729]
The Audio Question Answering (AQA) task includes audio event classification, audio captioning, and open-ended reasoning.<n>LALMs excel in general audio understanding, but are limited in temporal reasoning.<n>This paper addresses these challenges and limitations in audio temporal reasoning.
arXiv Detail & Related papers (2024-09-10T05:26:53Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension [95.8442896569132]
We introduce AIR-Bench, the first benchmark to evaluate the ability of Large Audio-Language Models (LALMs) to understand various types of audio signals and interact with humans in the textual format.
Results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation.
arXiv Detail & Related papers (2024-02-12T15:41:22Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
We propose "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space.
The proposed CTAP model is trained on 210k speech and phoneme pairs, achieving minimally-supervised TTS, VC, and ASR.
arXiv Detail & Related papers (2023-09-01T12:35:43Z) - Cross-lingual Text-To-Speech with Flow-based Voice Conversion for
Improved Pronunciation [11.336431583289382]
This paper presents a method for end-to-end cross-lingual text-to-speech.
It aims to preserve the target language's pronunciation regardless of the original speaker's language.
arXiv Detail & Related papers (2022-10-31T12:44:53Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.