Safe and Reliable Diffusion Models via Subspace Projection
- URL: http://arxiv.org/abs/2503.16835v1
- Date: Fri, 21 Mar 2025 04:09:25 GMT
- Title: Safe and Reliable Diffusion Models via Subspace Projection
- Authors: Huiqiang Chen, Tianqing Zhu, Linlin Wang, Xin Yu, Longxiang Gao, Wanlei Zhou,
- Abstract summary: We propose SAFER, a novel and efficient approach for thoroughly removing target concepts from T2I diffusion models.<n>The method first identifies a concept-specific subspace $S_c$ associated with the target concept c.<n>It then projects the prompt embeddings onto the subspace of $S_c$, effectively erasing the concept from the generated images.
- Score: 27.65307410937119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale text-to-image (T2I) diffusion models have revolutionized image generation, enabling the synthesis of highly detailed visuals from textual descriptions. However, these models may inadvertently generate inappropriate content, such as copyrighted works or offensive images. While existing methods attempt to eliminate specific unwanted concepts, they often fail to ensure complete removal, allowing the concept to reappear in subtle forms. For instance, a model may successfully avoid generating images in Van Gogh's style when explicitly prompted with 'Van Gogh', yet still reproduce his signature artwork when given the prompt 'Starry Night'. In this paper, we propose SAFER, a novel and efficient approach for thoroughly removing target concepts from diffusion models. At a high level, SAFER is inspired by the observed low-dimensional structure of the text embedding space. The method first identifies a concept-specific subspace $S_c$ associated with the target concept c. It then projects the prompt embeddings onto the complementary subspace of $S_c$, effectively erasing the concept from the generated images. Since concepts can be abstract and difficult to fully capture using natural language alone, we employ textual inversion to learn an optimized embedding of the target concept from a reference image. This enables more precise subspace estimation and enhances removal performance. Furthermore, we introduce a subspace expansion strategy to ensure comprehensive and robust concept erasure. Extensive experiments demonstrate that SAFER consistently and effectively erases unwanted concepts from diffusion models while preserving generation quality.
Related papers
- ACE: Attentional Concept Erasure in Diffusion Models [0.0]
Attentional Concept Erasure integrates a closed-form attention manipulation with lightweight fine-tuning.
We show that ACE achieves state-of-the-art concept removal efficacy and robustness.
Compared to prior methods, ACE better balances generality (erasing concept and related terms) and specificity (preserving unrelated content)
arXiv Detail & Related papers (2025-04-16T08:16:28Z) - Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models [24.15603438969762]
Interpret then Deactivate (ItD) is a novel framework to enable precise concept removal in T2I diffusion models.<n>ItD uses a sparse autoencoder to interpret each concept as a combination of multiple features.<n>It can be easily extended to erase multiple concepts without requiring further training.
arXiv Detail & Related papers (2025-03-12T14:46:40Z) - OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes.
We propose OmniPrism, a visual concept disentangling approach for creative image generation.
Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts.
arXiv Detail & Related papers (2024-12-16T18:59:52Z) - Continuous Concepts Removal in Text-to-image Diffusion Models [27.262721132177845]
Concerns have been raised about the potential for text-to-image models to create content that infringes on copyrights or depicts disturbing subject matter.<n>We propose a novel approach called CCRT that includes a designed knowledge distillation paradigm.<n>It constrains the text-image alignment behavior during the continuous concept removal process by using a set of text prompts.
arXiv Detail & Related papers (2024-11-30T20:40:10Z) - Safeguard Text-to-Image Diffusion Models with Human Feedback Inversion [51.931083971448885]
We propose a framework named Human Feedback Inversion (HFI), where human feedback on model-generated images is condensed into textual tokens guiding the mitigation or removal of problematic images.
Our experimental results demonstrate our framework significantly reduces objectionable content generation while preserving image quality, contributing to the ethical deployment of AI in the public sphere.
arXiv Detail & Related papers (2024-07-17T05:21:41Z) - Get What You Want, Not What You Don't: Image Content Suppression for
Text-to-Image Diffusion Models [86.92711729969488]
We analyze how to manipulate the text embeddings and remove unwanted content from them.
The first regularizes the text embedding matrix and effectively suppresses the undesired content.
The second method aims to further suppress the unwanted content generation of the prompt, and encourages the generation of desired content.
arXiv Detail & Related papers (2024-02-08T03:15:06Z) - Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers [24.64639078273091]
Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept.
We propose Reliable Concept Erasing via Lightweight Erasers (Receler)
arXiv Detail & Related papers (2023-11-29T15:19:49Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images.
We present the Geom-Erasing, a novel concept removal method based on the geometric-driven control.
arXiv Detail & Related papers (2023-10-09T17:13:10Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
We propose a method called SDD to prevent problematic content generation in text-to-image diffusion models.
Our method eliminates a much greater proportion of harmful content from the generated images without degrading the overall image quality.
arXiv Detail & Related papers (2023-07-12T07:48:29Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.