Preferential Multi-Objective Bayesian Optimization for Drug Discovery
- URL: http://arxiv.org/abs/2503.16841v1
- Date: Fri, 21 Mar 2025 04:27:06 GMT
- Title: Preferential Multi-Objective Bayesian Optimization for Drug Discovery
- Authors: Tai Dang, Long-Hung Pham, Sang T. Truong, Ari Glenn, Wendy Nguyen, Edward A. Pham, Jeffrey S. Glenn, Sanmi Koyejo, Thang Luong,
- Abstract summary: CheapVS provides preferences regarding the trade-offs between drug properties via pairwise comparison.<n>On a library of 100K chemical candidates targeting EGFR and DRD2, CheapVS outperforms state-of-the-art screening methods in identifying drugs within a limited computational budget.
- Score: 13.740630847478453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite decades of advancements in automated ligand screening, large-scale drug discovery remains resource-intensive and requires post-processing hit selection, a step where chemists manually select a few promising molecules based on their chemical intuition. This creates a major bottleneck in the virtual screening process for drug discovery, demanding experts to repeatedly balance complex trade-offs among drug properties across a vast pool of candidates. To improve the efficiency and reliability of this process, we propose a novel human-centered framework named CheapVS that allows chemists to guide the ligand selection process by providing preferences regarding the trade-offs between drug properties via pairwise comparison. Our framework combines preferential multi-objective Bayesian optimization with a docking model for measuring binding affinity to capture human chemical intuition for improving hit identification. Specifically, on a library of 100K chemical candidates targeting EGFR and DRD2, CheapVS outperforms state-of-the-art screening methods in identifying drugs within a limited computational budget. Notably, our method can recover up to 16/37 EGFR and 37/58 DRD2 known drugs while screening only 6% of the library, showcasing its potential to significantly advance drug discovery.
Related papers
- Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization [51.104444856052204]
We present MultiMol, a collaborative large language model (LLM) system designed to guide multi-objective molecular optimization.<n>In evaluations across six multi-objective optimization tasks, MultiMol significantly outperforms existing methods, achieving a 82.30% success rate.
arXiv Detail & Related papers (2025-03-05T13:47:55Z) - InversionGNN: A Dual Path Network for Multi-Property Molecular Optimization [77.79862482208326]
InversionGNN is an effective yet sample-efficient dual-path graph neural network (GNN) for multi-objective drug discovery.<n>We train the model for multi-property prediction to acquire knowledge of the optimal combination of functional groups.<n>Then the learned chemical knowledge helps the inversion generation path to generate molecules with required properties.
arXiv Detail & Related papers (2025-03-03T12:53:36Z) - DrugImproverGPT: A Large Language Model for Drug Optimization with Fine-Tuning via Structured Policy Optimization [53.27954325490941]
Finetuning a Large Language Model (LLM) is crucial for generating results towards specific objectives.<n>This research introduces a novel reinforcement learning algorithm to finetune a drug optimization LLM-based generative model.
arXiv Detail & Related papers (2025-02-11T04:00:21Z) - Test-Time Training Scaling for Chemical Exploration in Drug Design [3.1406146587437904]
We propose a new benchmark to discover dissimilar molecules that possess similar bioactivity.
We show that a population of RL agents can solve the benchmark, while a single agent cannot.
We also find that cooperative strategies are not significantly better than independent agents.
arXiv Detail & Related papers (2025-01-31T14:11:10Z) - DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
We propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration.
Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb) to systematically extract DTIs.
By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - Pareto Optimization to Accelerate Multi-Objective Virtual Screening [11.356174411578515]
We develop a tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R.
This workflow and associated open source software can reduce the screening burden of molecular design projects.
arXiv Detail & Related papers (2023-10-16T17:19:46Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - LIMO: Latent Inceptionism for Targeted Molecule Generation [14.391216237573369]
We present Latent Inceptionism on Molecules (LIMO), which significantly accelerates molecule generation with an inceptionism-like technique.
Comprehensive experiments show that LIMO performs competitively on benchmark tasks.
One of our generated drug-like compounds has a predicted $K_D$ of $6 cdot 10-14$ M against the human estrogen receptor.
arXiv Detail & Related papers (2022-06-17T21:05:58Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
arXiv Detail & Related papers (2021-07-06T08:25:43Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.