Downstream Analysis of Foundational Medical Vision Models for Disease Progression
- URL: http://arxiv.org/abs/2503.16842v1
- Date: Fri, 21 Mar 2025 04:27:49 GMT
- Title: Downstream Analysis of Foundational Medical Vision Models for Disease Progression
- Authors: Basar Demir, Soumitri Chattopadhyay, Thomas Hastings Greer, Boqi Chen, Marc Niethammer,
- Abstract summary: This work evaluates the ability of medical vision foundational models to predict disease progression using a simple linear probe.<n>We show that intermediate layer features of segmentation models capture structural information, while those of registration models encode knowledge of change over time.
- Score: 13.871967855022415
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical vision foundational models are used for a wide variety of tasks, including medical image segmentation and registration. This work evaluates the ability of these models to predict disease progression using a simple linear probe. We hypothesize that intermediate layer features of segmentation models capture structural information, while those of registration models encode knowledge of change over time. Beyond demonstrating that these features are useful for disease progression prediction, we also show that registration model features do not require spatially aligned input images. However, for segmentation models, spatial alignment is essential for optimal performance. Our findings highlight the importance of spatial alignment and the utility of foundation model features for image registration.
Related papers
- Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.
We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.<n>Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Structure-Aware Stylized Image Synthesis for Robust Medical Image Segmentation [10.776242801237862]
We propose a novel medical image segmentation method that combines diffusion models and Structure-Preserving Network for structure-aware one-shot image stylization.
Our approach effectively mitigates domain shifts by transforming images from various sources into a consistent style while maintaining the location, size, and shape of lesions.
arXiv Detail & Related papers (2024-12-05T16:15:32Z) - ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images [44.107186498384024]
ImageFlowNet is a novel model designed to forecast disease trajectories from initial images while preserving spatial details.<n>We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features.<n>Our contributions include the development of ImageFlowNet, its theoretical, and empirical validation on real-world datasets.
arXiv Detail & Related papers (2024-06-20T23:51:32Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Foundational Models in Medical Imaging: A Comprehensive Survey and
Future Vision [6.2847894163744105]
Foundation models are large-scale, pre-trained deep-learning models adapted to a wide range of downstream tasks.
These models facilitate contextual reasoning, generalization, and prompt capabilities at test time.
Capitalizing on the advances in computer vision, medical imaging has also marked a growing interest in these models.
arXiv Detail & Related papers (2023-10-28T12:08:12Z) - Certification of Deep Learning Models for Medical Image Segmentation [44.177565298565966]
We present for the first time a certified segmentation baseline for medical imaging based on randomized smoothing and diffusion models.
Our results show that leveraging the power of denoising diffusion probabilistic models helps us overcome the limits of randomized smoothing.
arXiv Detail & Related papers (2023-10-05T16:40:33Z) - Empirical Analysis of a Segmentation Foundation Model in Prostate
Imaging [9.99042549094606]
We consider a recently developed foundation model for medical image segmentation, UniverSeg.
We conduct an empirical evaluation study in the context of prostate imaging and compare it against the conventional approach of training a task-specific segmentation model.
arXiv Detail & Related papers (2023-07-06T20:00:52Z) - Prototype Learning for Explainable Brain Age Prediction [1.104960878651584]
We present ExPeRT, an explainable prototype-based model specifically designed for regression tasks.
Our proposed model makes a sample prediction from the distances to a set of learned prototypes in latent space, using a weighted mean of prototype labels.
Our approach achieved state-of-the-art prediction performance while providing insight into the model's reasoning process.
arXiv Detail & Related papers (2023-06-16T14:13:21Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
This contribution proposes spatial prediction error profiles (SPEPs) and spatial variable importance profiles (SVIPs) as novel model-agnostic assessment and interpretation tools.
The SPEPs and SVIPs of geostatistical methods, linear models, random forest, and hybrid algorithms show striking differences and also relevant similarities.
The novel diagnostic tools enrich the toolkit of spatial data science, and may improve ML model interpretation, selection, and design.
arXiv Detail & Related papers (2021-11-13T01:50:36Z) - A Meta-Learning Approach for Medical Image Registration [6.518615946009265]
We propose a novel unsupervised registration model which is integrated with a gradient-based meta learning framework.
In our experiments, the proposed model obtained significantly improved performance in terms of accuracy and training time.
arXiv Detail & Related papers (2021-04-21T10:27:05Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.