Salient Object Detection in Traffic Scene through the TSOD10K Dataset
- URL: http://arxiv.org/abs/2503.16910v1
- Date: Fri, 21 Mar 2025 07:21:24 GMT
- Title: Salient Object Detection in Traffic Scene through the TSOD10K Dataset
- Authors: Yu Qiu, Yuhang Sun, Jie Mei, Lin Xiao, Jing Xu,
- Abstract summary: Traffic Salient Object Detection (TSOD) aims to segment the objects critical to driving safety by combining semantic (e.g., collision risks) and visual saliency.<n>Our research establishes the first foundation for safety-aware saliency analysis in intelligent transportation systems.
- Score: 22.615252113004402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic Salient Object Detection (TSOD) aims to segment the objects critical to driving safety by combining semantic (e.g., collision risks) and visual saliency. Unlike SOD in natural scene images (NSI-SOD), which prioritizes visually distinctive regions, TSOD emphasizes the objects that demand immediate driver attention due to their semantic impact, even with low visual contrast. This dual criterion, i.e., bridging perception and contextual risk, re-defines saliency for autonomous and assisted driving systems. To address the lack of task-specific benchmarks, we collect the first large-scale TSOD dataset with pixel-wise saliency annotations, named TSOD10K. TSOD10K covers the diverse object categories in various real-world traffic scenes under various challenging weather/illumination variations (e.g., fog, snowstorms, low-contrast, and low-light). Methodologically, we propose a Mamba-based TSOD model, termed Tramba. Considering the challenge of distinguishing inconspicuous visual information from complex traffic backgrounds, Tramba introduces a novel Dual-Frequency Visual State Space module equipped with shifted window partitioning and dilated scanning to enhance the perception of fine details and global structure by hierarchically decomposing high/low-frequency components. To emphasize critical regions in traffic scenes, we propose a traffic-oriented Helix 2D-Selective-Scan (Helix-SS2D) mechanism that injects driving attention priors while effectively capturing global multi-direction spatial dependencies. We establish a comprehensive benchmark by evaluating Tramba and 22 existing NSI-SOD models on TSOD10K, demonstrating Tramba's superiority. Our research establishes the first foundation for safety-aware saliency analysis in intelligent transportation systems.
Related papers
- Segmenting Objectiveness and Task-awareness Unknown Region for Autonomous Driving [46.70405993442064]
We propose a novel framework termed Segmenting Objectiveness and Task-Awareness (SOTA) for autonomous driving scenes.
SOTA enhances the segmentation of objectiveness through a Semantic Fusion Block (SFB) and filters anomalies irrelevant to road navigation tasks.
arXiv Detail & Related papers (2025-04-27T10:08:54Z) - Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework [62.47416496137193]
We propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop.<n>The architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime.
arXiv Detail & Related papers (2025-03-06T07:36:06Z) - CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
Accurately and promptly predicting accidents among surrounding traffic agents from camera footage is crucial for the safety of autonomous vehicles (AVs)
This study introduces a novel accident anticipation framework for AVs, termed CRASH.
It seamlessly integrates five components: object detector, feature extractor, object-aware module, context-aware module, and multi-layer fusion.
Our model surpasses existing top baselines in critical evaluation metrics like Average Precision (AP) and mean Time-To-Accident (mTTA)
arXiv Detail & Related papers (2024-07-25T04:12:49Z) - Detecting Every Object from Events [24.58024539462497]
We propose Detecting Every Object in Events (DEOE), an approach tailored for achieving high-speed, class-agnostic open-world object detection in event-based vision.
Our code is available at https://github.com/Hatins/DEOE.
arXiv Detail & Related papers (2024-04-08T08:20:53Z) - MUSES: The Multi-Sensor Semantic Perception Dataset for Driving under Uncertainty [46.369657697892634]
We introduce MUSES, the MUlti-SEnsor Semantic perception dataset for driving in adverse conditions under increased uncertainty.
The dataset integrates a frame camera, a lidar, a radar, an event camera, and an IMU/GNSS sensor.
MUSES proves both effective for training and challenging for evaluating models under diverse visual conditions.
arXiv Detail & Related papers (2024-01-23T13:43:17Z) - Text-Driven Traffic Anomaly Detection with Temporal High-Frequency Modeling in Driving Videos [22.16190711818432]
We introduce TTHF, a novel single-stage method aligning video clips with text prompts, offering a new perspective on traffic anomaly detection.
Unlike previous approaches, the supervised signal of our method is derived from languages rather than one-hot vectors, providing a more comprehensive representation.
It is shown that our proposed TTHF achieves promising performance, outperforming state-of-the-art competitors by +5.4% AUC on the DoTA dataset.
arXiv Detail & Related papers (2024-01-07T15:47:19Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - ASOD60K: Audio-Induced Salient Object Detection in Panoramic Videos [79.05486554647918]
We propose PV-SOD, a new task that aims to segment salient objects from panoramic videos.
In contrast to existing fixation-level or object-level saliency detection tasks, we focus on multi-modal salient object detection (SOD)
We collect the first large-scale dataset, named ASOD60K, which contains 4K-resolution video frames annotated with a six-level hierarchy.
arXiv Detail & Related papers (2021-07-24T15:14:20Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - A Flow Base Bi-path Network for Cross-scene Video Crowd Understanding in
Aerial View [93.23947591795897]
In this paper, we strive to tackle the challenges and automatically understand the crowd from the visual data collected from drones.
To alleviate the background noise generated in cross-scene testing, a double-stream crowd counting model is proposed.
To tackle the crowd density estimation problem under extreme dark environments, we introduce synthetic data generated by game Grand Theft Auto V(GTAV)
arXiv Detail & Related papers (2020-09-29T01:48:24Z) - Visibility Guided NMS: Efficient Boosting of Amodal Object Detection in
Crowded Traffic Scenes [7.998326245039892]
Modern 2D object detection frameworks predict multiple bounding boxes per object that are refined using Non-Maximum-Suppression (NMS) to suppress all but one bounding box.
Our novel Visibility Guided NMS (vg-NMS) leverages both pixel-based as well as amodal object detection paradigms and improves the detection performance especially for highly occluded objects with little computational overhead.
We evaluate vg-NMS using KITTI, VIPER as well as the Synscapes dataset and show that it outperforms current state-of-the-art NMS.
arXiv Detail & Related papers (2020-06-15T17:03:23Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
Small and cluttered objects are common in real-world which are challenging for detection.
In this paper, we first innovatively introduce the idea of denoising to object detection.
Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects.
arXiv Detail & Related papers (2020-04-28T06:03:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.