SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing
- URL: http://arxiv.org/abs/2004.13316v2
- Date: Thu, 28 Apr 2022 07:24:19 GMT
- Title: SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing
- Authors: Xue Yang, Junchi Yan, Wenlong Liao, Xiaokang Yang, Jin Tang, Tao He
- Abstract summary: Small and cluttered objects are common in real-world which are challenging for detection.
In this paper, we first innovatively introduce the idea of denoising to object detection.
Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects.
- Score: 131.04304632759033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small and cluttered objects are common in real-world which are challenging
for detection. The difficulty is further pronounced when the objects are
rotated, as traditional detectors often routinely locate the objects in
horizontal bounding box such that the region of interest is contaminated with
background or nearby interleaved objects. In this paper, we first innovatively
introduce the idea of denoising to object detection. Instance-level denoising
on the feature map is performed to enhance the detection to small and cluttered
objects. To handle the rotation variation, we also add a novel IoU constant
factor to the smooth L1 loss to address the long standing boundary problem,
which to our analysis, is mainly caused by the periodicity of angular (PoA) and
exchangeability of edges (EoE). By combing these two features, our proposed
detector is termed as SCRDet++. Extensive experiments are performed on large
aerial images public datasets DOTA, DIOR, UCAS-AOD as well as natural image
dataset COCO, scene text dataset ICDAR2015, small traffic light dataset BSTLD
and our released S$^2$TLD by this paper. The results show the effectiveness of
our approach. The released dataset S2TLD is made public available, which
contains 5,786 images with 14,130 traffic light instances across five
categories.
Related papers
- Robust Tiny Object Detection in Aerial Images amidst Label Noise [50.257696872021164]
This study addresses the issue of tiny object detection under noisy label supervision.
We propose a DeNoising Tiny Object Detector (DN-TOD), which incorporates a Class-aware Label Correction scheme.
Our method can be seamlessly integrated into both one-stage and two-stage object detection pipelines.
arXiv Detail & Related papers (2024-01-16T02:14:33Z) - Improving the Detection of Small Oriented Objects in Aerial Images [0.0]
We propose a method to accurately detect small oriented objects in aerial images by enhancing the classification and regression tasks of the oriented object detection model.
We designed the Attention-Points Network consisting of two losses: Guided-Attention Loss (GALoss) and Box-Points Loss (BPLoss)
Experimental results show the effectiveness of our Attention-Points Network on a standard oriented aerial dataset with small object instances.
arXiv Detail & Related papers (2024-01-12T11:00:07Z) - Rethinking the Localization in Weakly Supervised Object Localization [51.29084037301646]
Weakly supervised object localization (WSOL) is one of the most popular and challenging tasks in computer vision.
Recent dividing WSOL into two parts (class-agnostic object localization and object classification) has become the state-of-the-art pipeline for this task.
We propose to replace SCR with a binary-class detector (BCD) for localizing multiple objects, where the detector is trained by discriminating the foreground and background.
arXiv Detail & Related papers (2023-08-11T14:38:51Z) - DINF: Dynamic Instance Noise Filter for Occluded Pedestrian Detection [0.0]
RCNN-based pedestrian detectors use rectangle regions to extract instance features.
The number of severely overlapping objects and the number of slightly overlapping objects are unbalanced.
An iterable dynamic instance noise filter (DINF) is proposed for the RCNN-based pedestrian detectors to improve the signal-noise ratio of the instance feature.
arXiv Detail & Related papers (2023-01-13T14:12:36Z) - Detecting tiny objects in aerial images: A normalized Wasserstein
distance and a new benchmark [45.10513110142015]
We propose a new evaluation metric dubbed Normalized Wasserstein Distance (NWD) and a new RanKing-based Assigning (RKA) strategy for tiny object detection.
The proposed NWD-RKA strategy can be easily embedded into all kinds of anchor-based detectors to replace the standard IoU threshold-based one.
Tested on four datasets, NWD-RKA can consistently improve tiny object detection performance by a large margin.
arXiv Detail & Related papers (2022-06-28T13:33:06Z) - DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images [11.45718985586972]
We propose a dense anchor-free rotated object detector (DARDet) for rotated object detection in aerial images.
Our DARDet directly predicts five parameters of rotated boxes at each foreground pixel of feature maps.
Our method achieves state-of-the-art performance on three commonly used aerial objects datasets.
arXiv Detail & Related papers (2021-10-03T15:28:14Z) - RSDet++: Point-based Modulated Loss for More Accurate Rotated Object
Detection [53.57176614020894]
We classify the discontinuity of loss in both five-param and eight-param rotated object detection methods as rotation sensitivity error (RSE)
We introduce a novel modulated rotation loss to alleviate the problem and propose a rotation sensitivity detection network (RSDet)
To further improve the accuracy of our method on objects smaller than 10 pixels, we introduce a novel RSDet++.
arXiv Detail & Related papers (2021-09-24T11:57:53Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.