HEAPO -- An Open Dataset for Heat Pump Optimization with Smart Electricity Meter Data and On-Site Inspection Protocols
- URL: http://arxiv.org/abs/2503.16993v1
- Date: Fri, 21 Mar 2025 09:58:01 GMT
- Title: HEAPO -- An Open Dataset for Heat Pump Optimization with Smart Electricity Meter Data and On-Site Inspection Protocols
- Authors: Tobias Brudermueller, Elgar Fleisch, Marina González Vayá, Thorsten Staake,
- Abstract summary: Heat pumps are essential for decarbonizing residential heating but consume substantial electrical energy impacting operational costs and grid demand.<n>We present an open-source dataset of electricity consumption from 1,408 households with heat pumps and smart electricity meters in the canton of Zurich, Switzerland.
- Score: 1.6419846488719232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heat pumps are essential for decarbonizing residential heating but consume substantial electrical energy, impacting operational costs and grid demand. Many systems run inefficiently due to planning flaws, operational faults, or misconfigurations. While optimizing performance requires skilled professionals, labor shortages hinder large-scale interventions. However, digital tools and improved data availability create new service opportunities for energy efficiency, predictive maintenance, and demand-side management. To support research and practical solutions, we present an open-source dataset of electricity consumption from 1,408 households with heat pumps and smart electricity meters in the canton of Zurich, Switzerland, recorded at 15-minute and daily resolutions between 2018-11-03 and 2024-03-21. The dataset includes household metadata, weather data from 8 stations, and ground truth data from 410 field visit protocols collected by energy consultants during system optimizations. Additionally, the dataset includes a Python-based data loader to facilitate seamless data processing and exploration.
Related papers
- A Real-World Energy Management Dataset from a Smart Company Building for Optimization and Machine Learning [1.5184812527436609]
We present a large real-world dataset obtained from monitoring a smart company facility over the course of six years, from 2018 to 2023.<n>The dataset includes energy consumption data from various facility areas and components, energy production data from a photovoltaic system and a combined heat and power plant, operational data from heating and cooling systems, and weather data from an on-site weather station.
arXiv Detail & Related papers (2025-03-14T14:55:22Z) - Distributed Multi-Head Learning Systems for Power Consumption Prediction [59.293903039988884]
We propose Distributed Multi-Head learning (DMH) systems for power consumption prediction in smart factories.
DMH systems are designed as distributed and split learning, reducing the client-to-server transmission cost.
DMH-E system reduces the error of the state-of-the-art systems by 14.5% to 24.0%.
arXiv Detail & Related papers (2025-01-21T13:46:23Z) - Heuristics and Metaheuristics for Dynamic Management of Computing and
Cooling Energy in Cloud Data Centers [0.0]
We propose novel power and thermal-aware strategies and models to provide joint cooling and computing optimizations.
Our results show that the combined awareness from both metaheuristic and best fit decreasing algorithms allow us to describe the global energy into faster and lighter optimization strategies.
This approach allows us to improve the energy efficiency of the data center, considering both computing and cooling infrastructures, in up to a 21.74% while maintaining quality of service.
arXiv Detail & Related papers (2023-12-17T09:40:36Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - High-resolution synthetic residential energy use profiles for the United
States [12.699816591560712]
We release a large-scale, synthetic, residential energy-use dataset for the residential sector across the contiguous United States.
The data comprises of hourly energy use profiles for synthetic households, disaggregated into Thermostatically Controlled Loads (TCL) and appliance use.
arXiv Detail & Related papers (2022-10-14T20:55:10Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Study of a Hybrid Photovoltaic-Wind Smart Microgrid using Data Science
Approach [1.3764085113103222]
A smart microgrid was implemented in Paracas, Ica, Peru, composed of 6kWp PV + 6kW Wind and provides electricity to a rural community of 40 families.
Real data of solar irradiance, wind speed, energy demand, and voltage of the battery bank from 2 periods of operation were studied to find patterns, seasonality, and existing correlations between the analyzed data.
These analyzed data will be used to improve sizing techniques and provide recommendations for energy management to optimize the performance of smart microgrids.
arXiv Detail & Related papers (2021-05-14T01:31:23Z) - AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data [12.681421165031576]
Energy saving and carbon emission reduction in buildings is one of the key measures in combating climate change.
The optimization of chiller system power consumption had been extensively studied in the mechanical engineering and building service domains.
With the advance of big data and AI, the adoption of machine learning into the optimization problems becomes popular.
arXiv Detail & Related papers (2020-10-09T09:51:03Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.