Distributed Multi-Head Learning Systems for Power Consumption Prediction
- URL: http://arxiv.org/abs/2501.12133v1
- Date: Tue, 21 Jan 2025 13:46:23 GMT
- Title: Distributed Multi-Head Learning Systems for Power Consumption Prediction
- Authors: Jia-Hao Syu, Jerry Chun-Wei Lin, Philip S. Yu,
- Abstract summary: We propose Distributed Multi-Head learning (DMH) systems for power consumption prediction in smart factories.
DMH systems are designed as distributed and split learning, reducing the client-to-server transmission cost.
DMH-E system reduces the error of the state-of-the-art systems by 14.5% to 24.0%.
- Score: 59.293903039988884
- License:
- Abstract: As more and more automatic vehicles, power consumption prediction becomes a vital issue for task scheduling and energy management. Most research focuses on automatic vehicles in transportation, but few focus on automatic ground vehicles (AGVs) in smart factories, which face complex environments and generate large amounts of data. There is an inevitable trade-off between feature diversity and interference. In this paper, we propose Distributed Multi-Head learning (DMH) systems for power consumption prediction in smart factories. Multi-head learning mechanisms are proposed in DMH to reduce noise interference and improve accuracy. Additionally, DMH systems are designed as distributed and split learning, reducing the client-to-server transmission cost, sharing knowledge without sharing local data and models, and enhancing the privacy and security levels. Experimental results show that the proposed DMH systems rank in the top-2 on most datasets and scenarios. DMH-E system reduces the error of the state-of-the-art systems by 14.5% to 24.0%. Effectiveness studies demonstrate the effectiveness of Pearson correlation-based feature engineering, and feature grouping with the proposed multi-head learning further enhances prediction performance.
Related papers
- Heterogeneous Federated Learning Systems for Time-Series Power Consumption Prediction with Multi-Head Embedding Mechanism [45.85115919116268]
Time-series prediction is increasingly popular in a variety of applications, such as smart factories and smart transportation.
Existing models lack discussion of collaborative learning and privacy issues among multiple clients.
We propose Multi-Head Heterogeneous Federated Learning (MHHFL) systems that consist of multiple head networks.
arXiv Detail & Related papers (2025-01-21T13:49:38Z) - STLLM-DF: A Spatial-Temporal Large Language Model with Diffusion for Enhanced Multi-Mode Traffic System Forecasting [32.943673568195315]
We propose the Spatial-Temporal Large Language Model (STLLM-DF) to improve multi-task transportation prediction.
The DDPM's robust denoising capabilities enable it to recover underlying data patterns from noisy inputs.
We show that STLLM-DF consistently outperforms existing models, achieving an average reduction of 2.40% in MAE, 4.50% in RMSE, and 1.51% in MAPE.
arXiv Detail & Related papers (2024-09-08T15:29:27Z) - Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand [57.82021900505197]
Internet of Vehicles (IoV) has great potential to transform transportation systems by enhancing road safety, reducing traffic congestion, and improving user experience through onboard infotainment applications.
Decentralized data sharing can improve security, privacy, reliability, and facilitate infotainment data sharing in IoVs.
We propose a decentralized data-sharing incentive mechanism based on multi-intelligent reinforcement learning to learn the supply-demand balance in markets.
arXiv Detail & Related papers (2024-03-29T14:58:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - A Robust Deep Learning System for Motor Bearing Fault Detection: Leveraging Multiple Learning Strategies and a Novel Double Loss Function [0.7028311157445256]
Motor bearing fault detection (MBFD) is critical for maintaining the reliability and operational efficiency of industrial machinery.
We propose a robust deep learning-based system for MBFD that incorporates multiple training strategies, including supervised, semi-supervised, and unsupervised learning.
Our approach is evaluated using benchmark datasets from the American Society for Mechanical Failure Prevention Technology (T), Case Western Reserve University Bearing Center (CWRU), and Paderborn University's Condition Monitoring of Bearing Damage in Electromechanical Drive Systems (PU)
arXiv Detail & Related papers (2023-10-17T07:50:52Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
arXiv Detail & Related papers (2023-02-23T12:29:20Z) - The Power of Communication in a Distributed Multi-Agent System [0.0]
Single-Agent (SA) Reinforcement Learning systems have shown outstanding re-sults on non-stationary problems.
Multi-Agent Reinforcement Learning(MARL) can surpass SA systems generally and when scaling.
arXiv Detail & Related papers (2021-11-30T18:00:58Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.