A Study into Investigating Temporal Robustness of LLMs
- URL: http://arxiv.org/abs/2503.17073v1
- Date: Fri, 21 Mar 2025 11:56:17 GMT
- Title: A Study into Investigating Temporal Robustness of LLMs
- Authors: Jonas Wallat, Abdelrahman Abdallah, Adam Jatowt, Avishek Anand,
- Abstract summary: Large Language Models (LLMs) encapsulate a surprising amount of factual world knowledge.<n>We aim to measure precisely how robust LLMs are for question answering based on their ability to process temporal information.<n>We show how a selection of these eight tests can be used automatically to judge a model's temporal robustness for user questions on the fly.
- Score: 19.067901534284395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) encapsulate a surprising amount of factual world knowledge. However, their performance on temporal questions and historical knowledge is limited because they often cannot understand temporal scope and orientation or neglect the temporal aspect altogether. In this study, we aim to measure precisely how robust LLMs are for question answering based on their ability to process temporal information and perform tasks requiring temporal reasoning and temporal factual knowledge. Specifically, we design eight time-sensitive robustness tests for factual information to check the sensitivity of six popular LLMs in the zero-shot setting. Overall, we find LLMs lacking temporal robustness, especially to temporal reformulations and the use of different granularities of temporal references. We show how a selection of these eight tests can be used automatically to judge a model's temporal robustness for user questions on the fly. Finally, we apply the findings of this study to improve the temporal QA performance by up to 55 percent.
Related papers
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question Answering [23.98067169669452]
Time-Sensitive Question Answering (TSQA) demands the effective utilization of specific temporal contexts.
We propose a novel framework that enhances temporal awareness and reasoning through Temporal Information-Aware Embedding and Granular Contrastive Reinforcement Learning.
arXiv Detail & Related papers (2024-09-25T13:13:21Z) - Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
We conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of large language models (LLMs)
Our investigation leads to enhancements in TempTabQA, a dataset specifically designed for temporal temporal question answering.
We introduce a novel approach, C.L.E.A.R. to strengthen LLM capabilities in this domain.
arXiv Detail & Related papers (2024-07-22T20:13:10Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Test of Time: A Benchmark for Evaluating LLMs on Temporal Reasoning [20.066249913943405]
Large language models (LLMs) have showcased remarkable reasoning capabilities, yet they remain susceptible to errors.
We introduce novel synthetic datasets specifically designed to assess LLM temporal reasoning abilities in various scenarios.
Our findings provide valuable insights into the strengths and weaknesses of current LLMs in temporal reasoning tasks.
arXiv Detail & Related papers (2024-06-13T14:31:19Z) - Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning? [70.19200858203388]
Temporal reasoning is fundamental for large language models to comprehend the world.
CoTempQA is a benchmark containing four co-temporal scenarios.
Our experiments reveal a significant gap between the performance of current LLMs and human-level reasoning.
arXiv Detail & Related papers (2024-06-13T12:56:21Z) - Temporal Blind Spots in Large Language Models [20.631107338678234]
Large language models (LLMs) have recently gained significant attention due to their unparalleled ability to perform various natural language processing tasks.
This study investigates the underlying limitations of general-purpose LLMs when deployed for tasks that require a temporal understanding.
arXiv Detail & Related papers (2024-01-22T16:20:14Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
It is crucial for large language models (LLMs) to understand the concept of temporal knowledge.
We propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning.
arXiv Detail & Related papers (2023-11-16T11:49:29Z) - Temporal Knowledge Question Answering via Abstract Reasoning Induction [32.08799860090592]
This study addresses the challenge of enhancing temporal knowledge reasoning in Large Language Models (LLMs)
We propose Abstract Reasoning Induction (ARI) framework, which divides temporal reasoning into two distinct phases: Knowledge-agnostic and Knowledge-based.
Our approach achieves remarkable improvements, with relative gains of 29.7% and 9.27% on two temporal QA datasets.
arXiv Detail & Related papers (2023-11-15T17:46:39Z) - MenatQA: A New Dataset for Testing the Temporal Comprehension and
Reasoning Abilities of Large Language Models [17.322480769274062]
Large language models (LLMs) have shown nearly saturated performance on many natural language processing (NLP) tasks.
This paper constructs Multiple Sensitive Factors Time QA (MenatQA) with total 2,853 samples for evaluating the time comprehension and reasoning abilities of LLMs.
arXiv Detail & Related papers (2023-10-08T13:19:52Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
Large language models (LLMs) face a challenge when engaging in temporal reasoning.
We propose TempLogic, a novel framework designed specifically for temporal question-answering tasks.
arXiv Detail & Related papers (2023-05-24T10:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.