Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question Answering
- URL: http://arxiv.org/abs/2409.16909v2
- Date: Sun, 29 Sep 2024 13:17:28 GMT
- Title: Enhancing Temporal Sensitivity and Reasoning for Time-Sensitive Question Answering
- Authors: Wanqi Yang, Yanda Li, Meng Fang, Ling Chen,
- Abstract summary: Time-Sensitive Question Answering (TSQA) demands the effective utilization of specific temporal contexts.
We propose a novel framework that enhances temporal awareness and reasoning through Temporal Information-Aware Embedding and Granular Contrastive Reinforcement Learning.
- Score: 23.98067169669452
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time-Sensitive Question Answering (TSQA) demands the effective utilization of specific temporal contexts, encompassing multiple time-evolving facts, to address time-sensitive questions. This necessitates not only the parsing of temporal information within questions but also the identification and understanding of time-evolving facts to generate accurate answers. However, current large language models still have limited sensitivity to temporal information and their inadequate temporal reasoning capabilities. In this paper, we propose a novel framework that enhances temporal awareness and reasoning through Temporal Information-Aware Embedding and Granular Contrastive Reinforcement Learning. Experimental results on four TSQA datasets demonstrate that our framework significantly outperforms existing LLMs in TSQA tasks, marking a step forward in bridging the performance gap between machine and human temporal understanding and reasoning.
Related papers
- Context Matters: An Empirical Study of the Impact of Contextual Information in Temporal Question Answering Systems [7.393290178125003]
This paper empirically examines the robustness of temporal question-answering systems trained on various context types.
We show that training with a mix of these contexts enhances model robustness and accuracy.
We introduce two new context-rich TQA datasets, ContextAQA and ContextTQE, and provide comprehensive evaluations and guidelines for training robust TQA models.
arXiv Detail & Related papers (2024-06-27T21:31:30Z) - Living in the Moment: Can Large Language Models Grasp Co-Temporal Reasoning? [70.19200858203388]
Temporal reasoning is fundamental for large language models to comprehend the world.
CoTempQA is a benchmark containing four co-temporal scenarios.
Our experiments reveal a significant gap between the performance of current LLMs and human-level reasoning.
arXiv Detail & Related papers (2024-06-13T12:56:21Z) - Temporal Blind Spots in Large Language Models [20.631107338678234]
Large language models (LLMs) have recently gained significant attention due to their unparalleled ability to perform various natural language processing tasks.
This study investigates the underlying limitations of general-purpose LLMs when deployed for tasks that require a temporal understanding.
arXiv Detail & Related papers (2024-01-22T16:20:14Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
It is crucial for large language models (LLMs) to understand the concept of temporal knowledge.
We propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning.
arXiv Detail & Related papers (2023-11-16T11:49:29Z) - Subspace Chronicles: How Linguistic Information Emerges, Shifts and
Interacts during Language Model Training [56.74440457571821]
We analyze tasks covering syntax, semantics and reasoning, across 2M pre-training steps and five seeds.
We identify critical learning phases across tasks and time, during which subspaces emerge, share information, and later disentangle to specialize.
Our findings have implications for model interpretability, multi-task learning, and learning from limited data.
arXiv Detail & Related papers (2023-10-25T09:09:55Z) - Back to the Future: Towards Explainable Temporal Reasoning with Large
Language Models [33.8108950744839]
We introduce the first task of explainable temporal reasoning, to predict an event's occurrence at a future timestamp based on context.
We show that our method achieves the state-of-the-art performance of temporal prediction and explanation.
arXiv Detail & Related papers (2023-10-02T10:35:23Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
Large language models (LLMs) face a challenge when engaging in temporal reasoning.
We propose TempLogic, a novel framework designed specifically for temporal question-answering tasks.
arXiv Detail & Related papers (2023-05-24T10:57:53Z) - A Dataset for Answering Time-Sensitive Questions [88.95075983560331]
Time is an important dimension in our physical world. Lots of facts can evolve with respect to time.
It is important to consider the time dimension and empower the existing QA models to reason over time.
The existing QA datasets contain rather few time-sensitive questions, hence not suitable for diagnosing or benchmarking the model's temporal reasoning capability.
arXiv Detail & Related papers (2021-08-13T16:42:25Z) - Temporal Common Sense Acquisition with Minimal Supervision [77.8308414884754]
This work proposes a novel sequence modeling approach that exploits explicit and implicit mentions of temporal common sense.
Our method is shown to give quality predictions of various dimensions of temporal common sense.
It also produces representations of events for relevant tasks such as duration comparison, parent-child relations, event coreference and temporal QA.
arXiv Detail & Related papers (2020-05-08T22:20:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.