論文の概要: Multi-modal Multi-platform Person Re-Identification: Benchmark and Method
- arxiv url: http://arxiv.org/abs/2503.17096v2
- Date: Mon, 24 Mar 2025 03:49:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 11:09:46.889215
- Title: Multi-modal Multi-platform Person Re-Identification: Benchmark and Method
- Title(参考訳): マルチモーダルなマルチプラットフォーム人物再同定:ベンチマークと方法
- Authors: Ruiyang Ha, Songyi Jiang, Bin Li, Bikang Pan, Yihang Zhu, Junjie Zhang, Xiatian Zhu, Shaogang Gong, Jingya Wang,
- Abstract要約: MP-ReIDは、マルチモダリティとマルチプラットフォームReIDに特化した新しいデータセットである。
このベンチマークは、RGB、赤外線、サーマルイメージングなど、さまざまなモードで1,930のIDからデータをコンパイルする。
クロスモダリティとクロスプラットフォームシナリオに適した,特定設計のプロンプトを備えたフレームワークであるUni-Prompt ReIDを紹介する。
- 参考スコア(独自算出の注目度): 58.59888754340054
- License:
- Abstract: Conventional person re-identification (ReID) research is often limited to single-modality sensor data from static cameras, which fails to address the complexities of real-world scenarios where multi-modal signals are increasingly prevalent. For instance, consider an urban ReID system integrating stationary RGB cameras, nighttime infrared sensors, and UAVs equipped with dynamic tracking capabilities. Such systems face significant challenges due to variations in camera perspectives, lighting conditions, and sensor modalities, hindering effective person ReID. To address these challenges, we introduce the MP-ReID benchmark, a novel dataset designed specifically for multi-modality and multi-platform ReID. This benchmark uniquely compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging, captured by both UAVs and ground-based cameras in indoor and outdoor environments. Building on this benchmark, we introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios. Our method consistently outperforms state-of-the-art approaches, establishing a robust foundation for future research in complex and dynamic ReID environments. Our dataset are available at:https://mp-reid.github.io/.
- Abstract(参考訳): 従来の人物再識別(ReID)研究は、静的カメラからの単一モードセンサデータに限られることが多く、マルチモーダル信号がますます普及する現実のシナリオの複雑さに対処できない。
例えば、静止RGBカメラ、夜間赤外線センサー、ダイナミックトラッキング機能を備えたUAVを統合した都市型ReIDシステムを考える。
このようなシステムは、カメラの視界、照明条件、センサーのモダリティの変化によって大きな課題に直面しており、効果的な人物ReIDを妨げている。
これらの課題に対処するために,マルチモダリティとマルチプラットフォームReIDに特化した新しいデータセットであるMP-ReIDベンチマークを導入する。
このベンチマークは、RGB、赤外線、サーマルイメージングなど、さまざまなモードで1,930個のIDからデータを一意にコンパイルする。
このベンチマークに基づいて構築されたUni-Prompt ReIDは、特定の設計のプロンプトを備えたフレームワークで、クロスプラットフォームとクロスプラットフォームのシナリオに適したものだ。
我々の手法は最先端のアプローチを一貫して上回り、複雑でダイナミックなReID環境における将来の研究のための堅牢な基盤を確立する。
私たちのデータセットは、https://mp-reid.github.io/で公開されています。
関連論文リスト
- Towards Global Localization using Multi-Modal Object-Instance Re-Identification [23.764646800085977]
マルチモーダルRGBと深度情報を統合した新しい再同定トランスフォーマアーキテクチャを提案する。
照明条件が異なったり散らかったりしたシーンにおけるReIDの改善を実演する。
また、正確なカメラのローカライゼーションを可能にするReIDベースのローカライゼーションフレームワークを開発し、異なる視点で識別を行う。
論文 参考訳(メタデータ) (2024-09-18T14:15:10Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
マルチターゲットマルチカメラトラッキングは、複数のカメラからのビデオストリームを使用して個人を特定し、追跡する重要なタスクである。
このタスクの既存のデータセットは、制御されたカメラネットワーク設定内で合成または人工的に構築される。
我々は16台のマルチモーダルカメラで2つの異なる環境でキャプチャされた長いビデオシーケンスを含む実世界の大規模データセットであるMTMMCを紹介する。
論文 参考訳(メタデータ) (2024-03-29T15:08:37Z) - An Open-World, Diverse, Cross-Spatial-Temporal Benchmark for Dynamic Wild Person Re-Identification [58.5877965612088]
人物再識別(ReID)は、データ駆動のディープラーニング技術のおかげで大きな進歩を遂げました。
既存のベンチマークデータセットには多様性がなく、これらのデータに基づいてトレーニングされたモデルは、動的なワイルドシナリオに対してうまく一般化できない。
OWDと呼ばれる新しいOpen-World, Diverse, Cross-Spatial-Temporalデータセットを開発した。
論文 参考訳(メタデータ) (2024-03-22T11:21:51Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
汎用の双方向アダプタを用いたマルチモーダル視覚プロンプト追跡モデルを提案する。
我々は、モーダリティ固有の情報をあるモーダリティから別のモーダリティへ転送するための、シンプルだが効果的なライト・フィーチャー・アダプタを開発した。
本モデルでは,完全微調整法と素早い学習法の両方と比較して,追跡性能が優れている。
論文 参考訳(メタデータ) (2023-12-17T05:27:31Z) - LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for
Place Recognition [11.206532393178385]
本稿では,マルチモーダル位置認識のための新しいニューラルネットワークLCPRを提案する。
位置認識性能を向上させるために,マルチビューカメラとLiDARデータを効果的に利用することができる。
論文 参考訳(メタデータ) (2023-11-06T15:39:48Z) - Dynamic Enhancement Network for Partial Multi-modality Person
Re-identification [52.70235136651996]
複数のモーダルの表現能力を維持しつつ、任意のモダリティを欠くことができる新しい動的拡張ネットワーク(DENet)を設計する。
欠落状態は変更可能であるため、動的拡張モジュールを設計し、欠落状態に応じて動的にモダリティ特性を適応的に向上する。
論文 参考訳(メタデータ) (2023-05-25T06:22:01Z) - Cross Vision-RF Gait Re-identification with Low-cost RGB-D Cameras and
mmWave Radars [15.662787088335618]
本研究は, クロスモーダルヒト再識別(ReID)の問題に関する研究である。
マルチモーダル多人数共振器ReIDのための第1種視覚RFシステムを提案する。
提案システムは56名のボランティアのうち92.5%がトップ1の精度、97.5%がトップ5の精度を達成できる。
論文 参考訳(メタデータ) (2022-07-16T10:34:25Z) - Cross-Modal Object Tracking: Modality-Aware Representations and A
Unified Benchmark [8.932487291107812]
多くの視覚系では、視覚的トラッキングはしばしばRGB画像シーケンスに基づいており、一部のターゲットは低照度環境では無効である。
追従過程におけるRGBとNIRの出現ギャップを軽減するために,モダリティを意識したターゲット表現を学習する新しいアルゴリズムを提案する。
無料の学術的利用のためにデータセットをリリースし、データセットのダウンロードリンクとコードを近くリリースします。
論文 参考訳(メタデータ) (2021-11-08T03:58:55Z) - Event-based Stereo Visual Odometry [42.77238738150496]
ステレオ・イベント・ベースのカメラ・リグが取得したデータから視覚計測の問題に対する解決策を提案する。
我々は,シンプルかつ効率的な表現を用いて,ステレオイベントベースのデータの時間的一貫性を最大化する。
論文 参考訳(メタデータ) (2020-07-30T15:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。