Enhancing Steering Estimation with Semantic-Aware GNNs
- URL: http://arxiv.org/abs/2503.17153v1
- Date: Fri, 21 Mar 2025 13:58:08 GMT
- Title: Enhancing Steering Estimation with Semantic-Aware GNNs
- Authors: Fouad Makiyeh, Huy-Dung Nguyen, Patrick Chareyre, Ramin Hasani, Marc Blanchon, Daniela Rus,
- Abstract summary: hybrid architectures combine 3D neural network models with recurrent neural networks (RNNs) for temporal modeling.<n>We evaluate four hybrid 3D models, all of which outperform the 2D-only baseline.<n>We validate our approach on the KITTI dataset, achieving a 71% improvement over 2D-only models.
- Score: 41.89219383258699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Steering estimation is a critical task in autonomous driving, traditionally relying on 2D image-based models. In this work, we explore the advantages of incorporating 3D spatial information through hybrid architectures that combine 3D neural network models with recurrent neural networks (RNNs) for temporal modeling, using LiDAR-based point clouds as input. We systematically evaluate four hybrid 3D models, all of which outperform the 2D-only baseline, with the Graph Neural Network (GNN) - RNN model yielding the best results. To reduce reliance on LiDAR, we leverage a pretrained unified model to estimate depth from monocular images, reconstructing pseudo-3D point clouds. We then adapt the GNN-RNN model, originally designed for LiDAR-based point clouds, to work with these pseudo-3D representations, achieving comparable or even superior performance compared to the LiDAR-based model. Additionally, the unified model provides semantic labels for each point, enabling a more structured scene representation. To further optimize graph construction, we introduce an efficient connectivity strategy where connections are predominantly formed between points of the same semantic class, with only 20\% of inter-class connections retained. This targeted approach reduces graph complexity and computational cost while preserving critical spatial relationships. Finally, we validate our approach on the KITTI dataset, achieving a 71% improvement over 2D-only models. Our findings highlight the advantages of 3D spatial information and efficient graph construction for steering estimation, while maintaining the cost-effectiveness of monocular images and avoiding the expense of LiDAR-based systems.
Related papers
- Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
We propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation.
Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers.
Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T06:48:01Z) - LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models [1.1965844936801797]
Generative modeling of 3D LiDAR data is an emerging task with promising applications for autonomous mobile robots.
We present R2DM, a novel generative model for LiDAR data that can generate diverse and high-fidelity 3D scene point clouds.
Our method is built upon denoising diffusion probabilistic models (DDPMs), which have shown impressive results among generative model frameworks.
arXiv Detail & Related papers (2023-09-17T12:26:57Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation.
In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation.
Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization.
arXiv Detail & Related papers (2023-07-29T20:46:44Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
In this paper, we revisit the local point aggregators from the perspective of allocating computational resources.
We find that the simplest pillar based models perform surprisingly well considering both accuracy and latency.
Our results challenge the common intuition that the detailed geometry modeling is essential to achieve high performance for 3D object detection.
arXiv Detail & Related papers (2023-05-08T17:59:14Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
We propose a novel optimization-based paradigm for 3D human model fitting on images and scans.
Our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art.
LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.
arXiv Detail & Related papers (2022-05-12T17:55:51Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Monocular 3D Detection with Geometric Constraints Embedding and
Semi-supervised Training [3.8073142980733]
We propose a novel framework for monocular 3D objects detection using only RGB images, called KM3D-Net.
We design a fully convolutional model to predict object keypoints, dimension, and orientation, and then combine these estimations with perspective geometry constraints to compute position attribute.
arXiv Detail & Related papers (2020-09-02T00:51:51Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.