Strong Baseline: Multi-UAV Tracking via YOLOv12 with BoT-SORT-ReID
- URL: http://arxiv.org/abs/2503.17237v2
- Date: Mon, 07 Apr 2025 13:03:35 GMT
- Title: Strong Baseline: Multi-UAV Tracking via YOLOv12 with BoT-SORT-ReID
- Authors: Yu-Hsi Chen,
- Abstract summary: Multi-UAV tracking in thermal infrared video is challenging due to low contrast, environmental noise, and small target sizes.<n>We present a tracking framework built on YOLOv12 and BoT-SORT, enhanced with tailored training and inference strategies.<n>We provide implementation details, in-depth experimental analysis, and a discussion of potential improvements.
- Score: 0.03464344220266879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and tracking multiple unmanned aerial vehicles (UAVs) in thermal infrared video is inherently challenging due to low contrast, environmental noise, and small target sizes. This paper provides a straightforward approach to address multi-UAV tracking in thermal infrared video, leveraging recent advances in detection and tracking. Instead of relying on the well-established YOLOv5 with DeepSORT combination, we present a tracking framework built on YOLOv12 and BoT-SORT, enhanced with tailored training and inference strategies. We evaluate our approach following the 4th Anti-UAV Challenge metrics and reach competitive performance. Notably, we achieved strong results without using contrast enhancement or temporal information fusion to enrich UAV features, highlighting our approach as a "Strong Baseline" for multi-UAV tracking tasks. We provide implementation details, in-depth experimental analysis, and a discussion of potential improvements. The code is available at https://github.com/wish44165/YOLOv12-BoT-SORT-ReID .
Related papers
- Learning Occlusion-Robust Vision Transformers for Real-Time UAV Tracking [11.146155422858824]
Single-stream architectures using Vision Transformer (ViT) backbones show great potential for real-time UAV tracking.
We propose to learn Occlusion-Robust Representations (ORR) based on ViTs for UAV tracking.
We also propose an Adaptive Feature-Based Knowledge Distillation (AFKD) method to create a more compact tracker.
arXiv Detail & Related papers (2025-04-12T14:06:50Z) - SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
This paper addresses the problem of multi-object tracking in Unmanned Aerial Vehicle (UAV) footage.
It plays a critical role in various UAV applications, including traffic monitoring systems and real-time suspect tracking by the police.
We propose a new tracking strategy, which initiates the tracking of target objects from low-confidence detections.
arXiv Detail & Related papers (2024-10-26T05:09:20Z) - Performance Evaluation of Deep Learning-based Quadrotor UAV Detection and Tracking Methods [0.0]
Unmanned Aerial Vehicles (UAVs) are becoming more popular in various sectors, offering many benefits, yet introducing significant challenges to privacy and safety.
This paper investigates state-of-the-art solutions for detecting and tracking quadrotor UAVs to address these concerns.
Cutting-edge deep learning models, specifically the YOLOv5 and YOLOv8 series, are evaluated for their performance in identifying UAVs accurately and quickly.
arXiv Detail & Related papers (2024-09-30T23:37:02Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses.
We propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses.
arXiv Detail & Related papers (2024-01-18T02:14:13Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - Continuity-Aware Latent Interframe Information Mining for Reliable UAV
Tracking [5.9397055042513465]
Unmanned aerial vehicle (UAV) tracking is crucial for autonomous navigation and has broad applications in robotic automation fields.
This work proposes a novel framework with continuity-aware latent interframe information mining for reliable UAV tracking, i.e., ClimRT.
arXiv Detail & Related papers (2023-03-08T11:42:57Z) - Learning to Compress Unmanned Aerial Vehicle (UAV) Captured Video:
Benchmark and Analysis [54.07535860237662]
We propose a novel task for learned UAV video coding and construct a comprehensive and systematic benchmark for such a task.
It is expected that the benchmark will accelerate the research and development in video coding on drone platforms.
arXiv Detail & Related papers (2023-01-15T15:18:02Z) - AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility [125.77396380698639]
AVisT is a benchmark for visual tracking in diverse scenarios with adverse visibility.
AVisT comprises 120 challenging sequences with 80k annotated frames, spanning 18 diverse scenarios.
We benchmark 17 popular and recent trackers on AVisT with detailed analysis of their tracking performance across attributes.
arXiv Detail & Related papers (2022-08-14T17:49:37Z) - E^2VTS: Energy-Efficient Video Text Spotting from Unmanned Aerial
Vehicles [78.50123964690094]
Unmanned Aerial Vehicles (UAVs) based video text spotting has been extensively used in civil and military domains.
Our proposed energy-efficient video text spotting solution, dubbed as E2VTS, outperforms all previous methods by achieving a competitive tradeoff between energy efficiency and performance.
arXiv Detail & Related papers (2022-06-05T22:43:17Z) - Vision-based Anti-UAV Detection and Tracking [18.307952561941942]
Unmanned aerial vehicles (UAV) have been widely used in various fields, and their invasion of security and privacy has aroused social concern.
We propose a visible light mode dataset called Dalian University of Technology Anti-UAV dataset, DUT Anti-UAV.
It contains a detection dataset with a total of 10,000 images and a tracking dataset with 20 videos that include short-term and long-term sequences.
arXiv Detail & Related papers (2022-05-22T15:21:45Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.