Continuity-Aware Latent Interframe Information Mining for Reliable UAV
Tracking
- URL: http://arxiv.org/abs/2303.04525v1
- Date: Wed, 8 Mar 2023 11:42:57 GMT
- Title: Continuity-Aware Latent Interframe Information Mining for Reliable UAV
Tracking
- Authors: Changhong Fu, Mutian Cai, Sihang Li, Kunhan Lu, Haobo Zuo, Chongjun
Liu
- Abstract summary: Unmanned aerial vehicle (UAV) tracking is crucial for autonomous navigation and has broad applications in robotic automation fields.
This work proposes a novel framework with continuity-aware latent interframe information mining for reliable UAV tracking, i.e., ClimRT.
- Score: 5.9397055042513465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicle (UAV) tracking is crucial for autonomous navigation
and has broad applications in robotic automation fields. However, reliable UAV
tracking remains a challenging task due to various difficulties like frequent
occlusion and aspect ratio change. Additionally, most of the existing work
mainly focuses on explicit information to improve tracking performance,
ignoring potential interframe connections. To address the above issues, this
work proposes a novel framework with continuity-aware latent interframe
information mining for reliable UAV tracking, i.e., ClimRT. Specifically, a new
efficient continuity-aware latent interframe information mining network
(ClimNet) is proposed for UAV tracking, which can generate highly-effective
latent frame between two adjacent frames. Besides, a novel location-continuity
Transformer (LCT) is designed to fully explore continuity-aware
spatial-temporal information, thereby markedly enhancing UAV tracking.
Extensive qualitative and quantitative experiments on three authoritative
aerial benchmarks strongly validate the robustness and reliability of ClimRT in
UAV tracking performance. Furthermore, real-world tests on the aerial platform
validate its practicability and effectiveness. The code and demo materials are
released at https://github.com/vision4robotics/ClimRT.
Related papers
- Deep Learning-Based Robust Multi-Object Tracking via Fusion of mmWave Radar and Camera Sensors [6.166992288822812]
Multi-Object Tracking plays a critical role in ensuring safer and more efficient navigation through complex traffic scenarios.
This paper presents a novel deep learning-based method that integrates radar and camera data to enhance the accuracy and robustness of Multi-Object Tracking in autonomous driving systems.
arXiv Detail & Related papers (2024-07-10T21:09:09Z) - Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
Single-stream architectures utilizing pre-trained ViT backbones offer improved performance, efficiency, and robustness.
We boost the efficiency of this framework by tailoring it into an adaptive framework that dynamically exits Transformer blocks for real-time UAV tracking.
We also improve the effectiveness of ViTs in handling motion blur, a common issue in UAV tracking caused by the fast movements of either the UAV, the tracked objects, or both.
arXiv Detail & Related papers (2024-07-07T14:10:04Z) - Segmentation of Drone Collision Hazards in Airborne RADAR Point Clouds
Using PointNet [0.7067443325368975]
A critical prerequisite for the integration is equipping UAVs with enhanced situational awareness to ensure safe operations.
Our study leverages radar technology for novel end-to-end semantic segmentation of aerial point clouds to simultaneously identify multiple collision hazards.
To our knowledge, this is the first approach addressing simultaneous identification of multiple collision threats in an aerial setting, achieving a robust 94% accuracy.
arXiv Detail & Related papers (2023-11-06T16:04:58Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
We propose MotionTrack, which learns robust short-term and long-term motions in a unified framework to associate trajectories from a short to long range.
For dense crowds, we design a novel Interaction Module to learn interaction-aware motions from short-term trajectories, which can estimate the complex movement of each target.
For extreme occlusions, we build a novel Refind Module to learn reliable long-term motions from the target's history trajectory, which can link the interrupted trajectory with its corresponding detection.
arXiv Detail & Related papers (2023-03-18T12:38:33Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Correlation Filters for Unmanned Aerial Vehicle-Based Aerial Tracking: A
Review and Experimental Evaluation [17.8941834997338]
Discriminative correlation filter (DCF)-based trackers have stood out for their high computational efficiency and robustness on a single CPU.
In this work, 23 state-of-the-art DCF-based trackers are summarized according to their innovations for solving various issues.
Experiments show the performance, verify the feasibility, and demonstrate the current challenges of DCF-based trackers onboard UAV tracking.
arXiv Detail & Related papers (2020-10-13T09:35:40Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.