論文の概要: Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
- arxiv url: http://arxiv.org/abs/2503.17244v1
- Date: Fri, 21 Mar 2025 15:50:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:33.044145
- Title: Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
- Title(参考訳): 画像回復のためのDeep End-to-End Posterior EN(DEEPEN)
- Authors: Jyothi Rikhab Chand, Mathews Jacob,
- Abstract要約: 現在のエンド・ツー・エンド(E2E)とプラグ・アンド・プレイ(MAP)画像アルゴリズムは、最大後部推定(MAP)を近似するが、後部分布からのサンプリングは提供できない。
対照的に、拡散モデルがE2E方式で訓練されることは困難である。
本稿では,MAP推定とサンプリングを可能にするDeep End-to-End Posergy EN(DEE)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 12.218356507147583
- License:
- Abstract: Current end-to-end (E2E) and plug-and-play (PnP) image reconstruction algorithms approximate the maximum a posteriori (MAP) estimate but cannot offer sampling from the posterior distribution, like diffusion models. By contrast, it is challenging for diffusion models to be trained in an E2E fashion. This paper introduces a Deep End-to-End Posterior ENergy (DEEPEN) framework, which enables MAP estimation as well as sampling. We learn the parameters of the posterior, which is the sum of the data consistency error and the negative log-prior distribution, using maximum likelihood optimization in an E2E fashion. The proposed approach does not require algorithm unrolling, and hence has a smaller computational and memory footprint than current E2E methods, while it does not require contraction constraints typically needed by current PnP methods. Our results demonstrate that DEEPEN offers improved performance than current E2E and PnP models in the MAP setting, while it also offers faster sampling compared to diffusion models. In addition, the learned energy-based model is observed to be more robust to changes in image acquisition settings.
- Abstract(参考訳): 現在のエンド・ツー・エンド(E2E)とプラグ・アンド・プレイ(PnP)画像再構成アルゴリズムは、最大後部推定(MAP)を近似するが、拡散モデルのような後部分布からのサンプリングは提供できない。
対照的に、拡散モデルがE2E方式で訓練されることは困難である。
本稿では,MAP推定とサンプリングを可能にするDeep End-to-End Posterior ENergy(DEEPEN)フレームワークを提案する。
E2E方式で最大極大最適化を用いてデータ一貫性誤差と負の対数分布の和である後部のパラメータを学習する。
提案手法はアルゴリズムのアンローリングを必要としないため、現行のE2E法よりも計算量やメモリフットプリントが小さいが、現行のPnP法では通常必要とされる収縮制約は不要である。
この結果から,DEPENはMAP設定における現行のE2EモデルやPnPモデルよりも性能が向上し,また拡散モデルよりも高速なサンプリングも可能であることが示された。
さらに、学習エネルギーベースモデルでは、画像取得設定の変化に対してより堅牢であることが観察された。
関連論文リスト
- Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
ノイズからの画像生成とデータからの逆変換の両方を可能にする拡散モデル (DM) は、強力な未ペア画像対イメージ(I2I)翻訳アルゴリズムにインスピレーションを与えている。
我々は、最小輸送コストの分布間の微分方程式(SDE)であるSchrodinger Bridges (SBs) を用いてこの問題に取り組む。
この観測に触発されて,SB ODE を予め訓練した安定拡散により近似する潜在シュロディンガー橋 (LSB) を提案する。
提案アルゴリズムは,従来のDMのコストをわずかに抑えながら,教師なし環境での競合的I2I翻訳を実現していることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:24:14Z) - Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think [53.2706196341054]
認識された非効率性は、これまで気付かれなかった推論パイプラインの欠陥によって引き起こされたことを示している。
タスク固有の損失を伴う単一ステップモデル上でエンドツーエンドの微調整を行い、他の拡散に基づく深さモデルや正規推定モデルよりも優れた決定論的モデルを得る。
論文 参考訳(メタデータ) (2024-09-17T16:58:52Z) - Minimizing Energy Costs in Deep Learning Model Training: The Gaussian Sampling Approach [11.878350833222711]
ガウス分布からの勾配更新をサンプリングするために, em GradSamp という手法を提案する。
Em GradSampは、勾配の合理化だけでなく、エポック全体のスキップを可能にし、全体的な効率を向上させる。
我々は、標準CNNとトランスフォーマーベースモデルの多種多様なセットにまたがって、我々の仮説を厳格に検証する。
論文 参考訳(メタデータ) (2024-06-11T15:01:20Z) - Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders [22.77397537980102]
我々は,真のモデルの後部の決定論的,モデルに依存しない後部近似(MAPA)を計算可能であることを示す。
我々は,(1)MAPAが真の後部傾向を捉えた低次元合成データに対する予備的な結果を示し,(2)MAPAに基づく推論は,ベースラインよりも少ない計算でより優れた密度推定を行う。
論文 参考訳(メタデータ) (2024-03-13T20:16:21Z) - Memory-efficient deep end-to-end posterior network (DEEPEN) for inverse
problems [13.732208253019966]
後部分布のE2E学習のためのメモリ効率向上手法を提案する。
この枠組みは3次元・高次元のMR画像再構成へ向けての道を開くものである。
論文 参考訳(メタデータ) (2024-02-08T05:29:04Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
近年のテキスト・トゥ・イメージ(T2I)拡散モデルでは、既成の高密度予測器では予測できないことがある。
我々は,事前学習したT2Iモデルを用いたパイプラインDMPを,高密度予測タスクの先駆けとして導入する。
限られたドメインのトレーニングデータにもかかわらず、この手法は任意の画像に対して忠実に推定し、既存の最先端のアルゴリズムを超越する。
論文 参考訳(メタデータ) (2023-11-30T18:59:44Z) - Variational Bayes image restoration with compressive autoencoders [4.879530644978008]
逆問題の正規化は、計算イメージングにおいて最重要となる。
本研究では,まず,最先端生成モデルの代わりに圧縮型オートエンコーダを提案する。
第2の貢献として、変分ベイズ潜時推定(VBLE)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-11-29T15:49:31Z) - Learning Structure-Guided Diffusion Model for 2D Human Pose Estimation [71.24808323646167]
ニューラルネットワークを用いてキーポイントのヒートマップを学習するための新しいスキームである textbfDiffusionPose を提案する。
トレーニング中、キーポイントはノイズを加えることでランダム分布に拡散され、拡散モデルはノイズ付きヒートマップから地中構造熱マップを復元する。
実験では、広く使用されているCOCO、CrowdPose、AI Challengeデータセット上で1.6、1.2、1.2mAPの改善による、私たちのスキームの長所が示されている。
論文 参考訳(メタデータ) (2023-06-29T16:24:32Z) - Post-Processing Temporal Action Detection [134.26292288193298]
時間的行動検出(TAD)法は、通常、入力された可変長のビデオを固定長のスニペット表現シーケンスに変換する際に、前処理のステップを踏む。
この前処理ステップは、ビデオを時間的にダウンサンプリングし、推論の解像度を低減し、元の時間分解における検出性能を阻害する。
モデルの再設計や再学習を伴わない新しいモデル非依存のポストプロセッシング手法を提案する。
論文 参考訳(メタデータ) (2022-11-27T19:50:37Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GAN) は、様々なタスクやアプリケーションにおいて魅力的な結果を示している。
GANのモード崩壊問題に対処するための新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-25T12:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。