Offline Model-Based Optimization: Comprehensive Review
- URL: http://arxiv.org/abs/2503.17286v1
- Date: Fri, 21 Mar 2025 16:35:02 GMT
- Title: Offline Model-Based Optimization: Comprehensive Review
- Authors: Minsu Kim, Jiayao Gu, Ye Yuan, Taeyoung Yun, Zixuan Liu, Yoshua Bengio, Can Chen,
- Abstract summary: offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets.<n>Recent advances in model-based optimization have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models.<n>Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review.
- Score: 61.91350077539443
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets. This setting is particularly relevant when querying the objective function is prohibitively expensive or infeasible, with applications spanning protein engineering, material discovery, neural architecture search, and beyond. The main difficulty lies in accurately estimating the objective landscape beyond the available data, where extrapolations are fraught with significant epistemic uncertainty. This uncertainty can lead to objective hacking(reward hacking), exploiting model inaccuracies in unseen regions, or other spurious optimizations that yield misleadingly high performance estimates outside the training distribution. Recent advances in model-based optimization(MBO) have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models. Trained with carefully designed strategies, these models are more robust against out-of-distribution issues, facilitating the discovery of improved designs. Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review. To bridge this gap, we present the first thorough review of offline MBO. We begin by formalizing the problem for both single-objective and multi-objective settings and by reviewing recent benchmarks and evaluation metrics. We then categorize existing approaches into two key areas: surrogate modeling, which emphasizes accurate function approximation in out-of-distribution regions, and generative modeling, which explores high-dimensional design spaces to identify high-performing designs. Finally, we examine the key challenges and propose promising directions for advancement in this rapidly evolving field including safe control of superintelligent systems.
Related papers
- Learning Surrogates for Offline Black-Box Optimization via Gradient Matching [29.831762991506242]
We present a theoretical framework to understand offline black-box optimization, by explicitly bounding the optimization quality based on how well the surrogate matches the latent gradient field that underlines the offline data.<n>Inspired by our principled analysis, we propose a black-box gradient matching algorithm to create effective surrogate models for offline optimization, improving over prior approaches on various real-world benchmarks.
arXiv Detail & Related papers (2025-02-26T22:35:54Z) - A Survey of Automatic Prompt Engineering: An Optimization Perspective [18.933465526053453]
This paper presents the first comprehensive survey on automated prompt engineering through a unified optimization-theoretic lens.
We formalize prompt optimization as a problem over discrete, continuous, and hybrid prompt spaces.
We highlight underexplored frontiers in constrained optimization and agent-oriented prompt design.
arXiv Detail & Related papers (2025-02-17T08:48:07Z) - Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward hacking, also termed reward overoptimization, remains a critical challenge.
We propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective.
We show that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets.
arXiv Detail & Related papers (2024-02-14T17:49:07Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
This paper considers the problem of offline optimization, where the objective function is unknown except for a collection of offline" data examples.
Instead of learning and then optimizing the unknown objective function, we take on a less intuitive but more direct view that optimization can be thought of as a process of sampling from a generative model.
arXiv Detail & Related papers (2024-01-04T01:32:50Z) - Design-Bench: Benchmarks for Data-Driven Offline Model-Based
Optimization [82.02008764719896]
Black-box model-based optimization problems are ubiquitous in a wide range of domains, such as the design of proteins, DNA sequences, aircraft, and robots.
We present Design-Bench, a benchmark for offline MBO with a unified evaluation protocol and reference implementations of recent methods.
Our benchmark includes a suite of diverse and realistic tasks derived from real-world optimization problems in biology, materials science, and robotics.
arXiv Detail & Related papers (2022-02-17T05:33:27Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.