On Quantum Perceptron Learning via Quantum Search
- URL: http://arxiv.org/abs/2503.17308v1
- Date: Fri, 21 Mar 2025 16:57:30 GMT
- Title: On Quantum Perceptron Learning via Quantum Search
- Authors: Xiaoyu Sun, Mathieu Roget, Giuseppe Di Molfetta, Hachem Kadri,
- Abstract summary: We show that the probability of sampling from a normal distribution for a $D$-dimensional hyperplane perfectly classifies the data scales as $Omega(gammaD)$ instead of $Theta(gamma)$.<n>We show how quantum search algorithms can be leveraged to enhance the overall complexity of perceptron learning.
- Score: 5.172382862031037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing interest in quantum machine learning, the perceptron -- a fundamental building block in traditional machine learning -- has emerged as a valuable model for exploring quantum advantages. Two quantum perceptron algorithms based on Grover's search, were developed in arXiv:1602.04799 to accelerate training and improve statistical efficiency in perceptron learning. This paper points out and corrects a mistake in the proof of Theorem 2 in arXiv:1602.04799. Specifically, we show that the probability of sampling from a normal distribution for a $D$-dimensional hyperplane that perfectly classifies the data scales as $\Omega(\gamma^{D})$ instead of $\Theta({\gamma})$, where $\gamma$ is the margin. We then revisit two well-established linear programming algorithms -- the ellipsoid method and the cutting plane random walk algorithm -- in the context of perceptron learning, and show how quantum search algorithms can be leveraged to enhance the overall complexity. Specifically, both algorithms gain a sub-linear speed-up $O(\sqrt{N})$ in the number of data points $N$ as a result of Grover's algorithm and an additional $O(D^{1.5})$ speed-up is possible for cutting plane random walk algorithm employing quantum walk search.
Related papers
- Arbitrary state creation via controlled measurement [49.494595696663524]
This algorithm creates an arbitrary $n$-qubit pure quantum superposition state with precision of $m$-decimals.
The algorithm uses one-qubit rotations, Hadamard transformations and C-NOT operations with multi-qubit controls.
arXiv Detail & Related papers (2025-04-13T07:23:50Z) - Quantum Algorithms for Stochastic Differential Equations: A Schrödingerisation Approach [29.662683446339194]
We propose quantum algorithms for linear differential equations.<n>The gate complexity of our algorithms exhibits an $mathcalO(dlog(Nd))$ dependence on the dimensions.<n>The algorithms are numerically verified for the Ornstein-Uhlenbeck processes, Brownian motions, and one-dimensional L'evy flights.
arXiv Detail & Related papers (2024-12-19T14:04:11Z) - A Novel Quantum-Classical Hybrid Algorithm for Determining Eigenstate Energies in Quantum Systems [1.9714447272714082]
This paper presents a novel quantum algorithm, XZ24, for efficiently computing the eigen-energy spectra of arbitrary quantum systems.
XZ24 has three key advantages: It removes the need for eigenstate preparation, requiring only a reference state with non-negligible overlap.
It enables simultaneous computation of multiple eigen-energies, depending on the reference state.
arXiv Detail & Related papers (2024-06-01T04:31:43Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent [37.59299233291882]
We propose Q-Newton, a hybrid quantum-classical scheduler for accelerating neural network training with Newton's GD.
Q-Newton utilizes a streamlined scheduling module that coordinates between quantum and classical linear solvers.
Our evaluation showcases the potential for Q-Newton to significantly reduce the total training time compared to commonly used quantum machines.
arXiv Detail & Related papers (2024-04-30T23:55:03Z) - A square-root speedup for finding the smallest eigenvalue [0.6597195879147555]
We describe a quantum algorithm for finding the smallest eigenvalue of a Hermitian matrix.
This algorithm combines Quantum Phase Estimation and Quantum Amplitude Estimation to achieve a quadratic speedup.
We also provide a similar algorithm with the same runtime that allows us to prepare a quantum state lying mostly in the matrix's low-energy subspace.
arXiv Detail & Related papers (2023-11-07T22:52:56Z) - On the average-case complexity of learning output distributions of
quantum circuits [55.37943886895049]
We show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model.
This learning model is widely used as an abstract computational model for most generic learning algorithms.
arXiv Detail & Related papers (2023-05-09T20:53:27Z) - Logarithmic-Regret Quantum Learning Algorithms for Zero-Sum Games [10.79781442303645]
We propose the first online quantum algorithm for solving zero-sum games.
Our algorithm generates classical outputs with succinct descriptions.
At the heart of our algorithm is a fast quantum multi-sampling procedure for the Gibbs sampling problem.
arXiv Detail & Related papers (2023-04-27T14:02:54Z) - Learning to predict arbitrary quantum processes [7.69390398476646]
We present an efficient machine learning (ML) algorithm for predicting any unknown quantum process over $n$ qubits.
Our results highlight the potential for ML models to predict the output of complex quantum dynamics much faster than the time needed to run the process itself.
arXiv Detail & Related papers (2022-10-26T17:52:59Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quadratic Quantum Speedup for Perceptron Training [0.0]
Perceptrons, which perform binary classification, are the fundamental building blocks of neural networks.
We show that query complexity to construct an oracle for the perceptrons has a quadratic improvement over classical methods.
Our algorithm can be generalized to train more complex machine learning models such as neural networks.
arXiv Detail & Related papers (2021-09-10T06:50:57Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Verifying Random Quantum Circuits with Arbitrary Geometry Using Tensor
Network States Algorithm [0.0]
Algorithm is up to $2$ orders of magnitudes faster than Sch$ddottexto$dinger-Feynman algorithm.
We simulate larger random quantum circuits up to $104$ qubits, showing that this algorithm is an ideal tool to verify relatively shallow quantum circuits on near-term quantum computers.
arXiv Detail & Related papers (2020-11-05T02:20:56Z) - Quantum Spectral Clustering [5.414308305392762]
Spectral clustering is a powerful machine learning algorithm for clustering data with non convex or nested structures.
We propose an end-to-end quantum algorithm spectral clustering, extending a number of works in quantum machine learning.
arXiv Detail & Related papers (2020-07-01T07:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.