Quantum Search for Gravitational Wave of Massive Black Hole Binaries
- URL: http://arxiv.org/abs/2505.24459v1
- Date: Fri, 30 May 2025 10:47:37 GMT
- Title: Quantum Search for Gravitational Wave of Massive Black Hole Binaries
- Authors: Fangzhou Guo, Jibo He,
- Abstract summary: We show that a quantum matched filtering algorithm can reduce the computational complexity from $O(N)$ to $O(sqrtN)$ theoretically.<n>It is also found that the performance can degrade in some cases due to instability of the algorithm.
- Score: 0.1578515540930834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Matched filtering is a common method for detecting gravitational waves. However, the computational costs of searching large template banks limit the efficiency of classical algorithms when searching for massive black hole binary (MBHB) systems. In this work, a quantum matched filtering algorithm based on Grover's algorithm is applied to the MBHB signals. It is demonstrated that the quantum approach can reduce the computational complexity from $O(N)$ to $O(\sqrt{N})$ theoretically, where $N$ is the size of the template bank. Simulated results indicate that the quantum-enhanced approach significantly reduces computational costs. However, it is also found that the performance can degrade in some cases due to instability of the algorithm. This highlights the need for more robust and stable quantum search strategies.
Related papers
- Arbitrary state creation via controlled measurement [49.494595696663524]
This algorithm creates an arbitrary $n$-qubit pure quantum superposition state with precision of $m$-decimals.<n>The algorithm uses one-qubit rotations, Hadamard transformations and C-NOT operations with multi-qubit controls.
arXiv Detail & Related papers (2025-04-13T07:23:50Z) - On Quantum Perceptron Learning via Quantum Search [5.172382862031037]
We show that the probability of sampling from a normal distribution for a $D$-dimensional hyperplane perfectly classifies the data scales as $Omega(gammaD)$ instead of $Theta(gamma)$.<n>We show how quantum search algorithms can be leveraged to enhance the overall complexity of perceptron learning.
arXiv Detail & Related papers (2025-03-21T16:57:30Z) - On the practicality of quantum sieving algorithms for the shortest vector problem [42.70026220176376]
lattice-based cryptography is one of the main candidates of post-quantum cryptography.<n> cryptographic security against quantum attackers is based on lattice problems like the shortest vector problem (SVP)<n>Asymptotic quantum speedups for solving SVP are known and rely on Grover's search.
arXiv Detail & Related papers (2024-10-17T16:54:41Z) - A Novel Quantum-Classical Hybrid Algorithm for Determining Eigenstate Energies in Quantum Systems [1.9714447272714082]
This paper presents a novel quantum algorithm, XZ24, for efficiently computing the eigen-energy spectra of arbitrary quantum systems.
XZ24 has three key advantages: It removes the need for eigenstate preparation, requiring only a reference state with non-negligible overlap.
It enables simultaneous computation of multiple eigen-energies, depending on the reference state.
arXiv Detail & Related papers (2024-06-01T04:31:43Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Quantum Advantage of Noisy Grover's Algorithm [3.803244458097104]
Grover's search algorithm is the only quantum algorithm with proven advantage to any possible classical search algorithm.
We present a noise-tolerant method that exponentially improves the noise threshold of Grover's algorithm.
arXiv Detail & Related papers (2023-06-19T11:17:32Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - $T$-depth-optimized Quantum Search with Quantum Data-access Machine [0.0]
We introduce an efficient quantum data-access process, dubbed as quantum data-access machine (QDAM)
We analyze the runtime of our algorithm in view of the fault-tolerant quantum computation (FTQC) consisting of logical qubits within an effective quantum error correction code.
arXiv Detail & Related papers (2022-11-08T01:36:02Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Hardware Efficient Quantum Search Algorithm [17.74233101199813]
We propose a novel hardware efficient quantum search algorithm to overcome this challenge.
Our key idea is to replace the global diffusion operation with low-cost local diffusions.
The circuit cost reduction leads to a remarkable improvement in the system success rates.
arXiv Detail & Related papers (2021-03-26T01:08:50Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.