State Fourier Diffusion Language Model (SFDLM): A Scalable, Novel Iterative Approach to Language Modeling
- URL: http://arxiv.org/abs/2503.17382v1
- Date: Sun, 16 Mar 2025 02:17:40 GMT
- Title: State Fourier Diffusion Language Model (SFDLM): A Scalable, Novel Iterative Approach to Language Modeling
- Authors: Andrew Kiruluta, Andreas Lemos,
- Abstract summary: This paper introduces a fully diffusion driven discrete text generation model built without any transformer or large convolution modules.<n>By composing local state space updates with global Fourier based mixing, the approach effectively captures both short and long range dependencies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, diffusion based methods have emerged as a powerful paradigm for generative modeling. Although discrete diffusion for natural language processing has been explored to a lesser extent, it shows promise for tasks requiring iterative denoising of token based data. In standard approaches to text generation, transformers dominate, but their reliance on self attention often incurs high computational costs. This paper introduces a fully diffusion driven discrete text generation model built without any transformer or large convolution modules. Instead, the model integrates structured state space dynamics in the time domain with a novel Complex Fourier Multi Layer Perceptron module that operates in the frequency domain. The forward noising process randomly samples the vocabulary to replace tokens with a controlled probability, while the learned reverse model systematically reverts corrupted sequences toward their original states. By composing local state space updates with global Fourier based mixing, the approach effectively captures both short and long range dependencies.
Related papers
- Generalized Interpolating Discrete Diffusion [65.74168524007484]
Masked diffusion is a popular choice due to its simplicity and effectiveness.<n>We derive the theoretical backbone of a family of general interpolating discrete diffusion processes.<n>Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise.
arXiv Detail & Related papers (2025-03-06T14:30:55Z) - DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation [24.85655658070008]
Diffusion Transformer Autoregressive Modeling (DiTAR) is a patch-based autoregressive framework combining a language model with a diffusion transformer.
In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.
arXiv Detail & Related papers (2025-02-06T10:09:49Z) - RDPM: Solve Diffusion Probabilistic Models via Recurrent Token Prediction [17.005198258689035]
Diffusion Probabilistic Models (DPMs) have emerged as the de facto approach for high-fidelity image synthesis.<n>We introduce a novel generative framework, the Recurrent Diffusion Probabilistic Model (RDPM), which enhances the diffusion process through a recurrent token prediction mechanism.
arXiv Detail & Related papers (2024-12-24T12:28:19Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model [37.2192243883707]
We propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation to generate fluent text.
Results on semantic generation, text completion and summarization show its effectiveness in generating high-quality long-form text.
arXiv Detail & Related papers (2023-06-05T01:36:39Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
Text-to-text Self-conditioned Simplex Diffusion employs a new form of self-conditioning, and applies the diffusion process on the logit simplex space rather than the learned embedding space.
We demonstrate that TESS outperforms state-of-the-art non-autoregressive models, requires fewer diffusion steps with minimal drop in performance, and is competitive with pretrained autoregressive sequence-to-sequence models.
arXiv Detail & Related papers (2023-05-15T06:33:45Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers [50.90457644954857]
In this work, we apply diffusion models to approach sequence-to-sequence text generation.
We propose SeqDiffuSeq, a text diffusion model for sequence-to-sequence generation.
Experiment results illustrate the good performance on sequence-to-sequence generation in terms of text quality and inference time.
arXiv Detail & Related papers (2022-12-20T15:16:24Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.