Temporal Flexibility in Spiking Neural Networks: Towards Generalization Across Time Steps and Deployment Friendliness
- URL: http://arxiv.org/abs/2503.17394v1
- Date: Tue, 18 Mar 2025 06:09:42 GMT
- Title: Temporal Flexibility in Spiking Neural Networks: Towards Generalization Across Time Steps and Deployment Friendliness
- Authors: Kangrui Du, Yuhang Wu, Shikuang Deng, Shi Gu,
- Abstract summary: Spiking Neural Networks (SNNs) allow for energy-efficient implementation on neuromorphic hardware.<n>Currently, SNNs trained with current direct training approaches are constrained to a specific time step.<n>We introduce Mixed Time-step Training (MTT), a novel method that improves the temporal flexibility of SNNs.
- Score: 15.841764541165238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs), models inspired by neural mechanisms in the brain, allow for energy-efficient implementation on neuromorphic hardware. However, SNNs trained with current direct training approaches are constrained to a specific time step. This "temporal inflexibility" 1) hinders SNNs' deployment on time-step-free fully event-driven chips and 2) prevents energy-performance balance based on dynamic inference time steps. In this study, we first explore the feasibility of training SNNs that generalize across different time steps. We then introduce Mixed Time-step Training (MTT), a novel method that improves the temporal flexibility of SNNs, making SNNs adaptive to diverse temporal structures. During each iteration of MTT, random time steps are assigned to different SNN stages, with spikes transmitted between stages via communication modules. After training, the weights are deployed and evaluated on both time-stepped and fully event-driven platforms. Experimental results show that models trained by MTT gain remarkable temporal flexibility, friendliness for both event-driven and clock-driven deployment (nearly lossless on N-MNIST and 10.1% higher than standard methods on CIFAR10-DVS), enhanced network generalization, and near SOTA performance. To the best of our knowledge, this is the first work to report the results of large-scale SNN deployment on fully event-driven scenarios.
Related papers
- Efficient Distillation of Deep Spiking Neural Networks for Full-Range Timestep Deployment [10.026742974971189]
Spiking Neural Networks (SNNs) are emerging as a brain-inspired alternative to traditional Artificial Neural Networks (ANNs)
Despite this, SNNs often suffer from accuracy compared to ANNs and face deployment challenges due to inference timesteps, which require retraining for adjustments, limiting operational flexibility.
We propose a novel distillation framework for deep SNNs that optimize performance across full-range timesteps without specific retraining, enhancing both efficacy and adaptability.
arXiv Detail & Related papers (2025-01-27T10:22:38Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
Spiking neural networks (SNNs) have garnered significant attention for their low power consumption and high biologicalability.
Current SNNs struggle to balance accuracy and latency in neuromorphic datasets.
We propose Step-wise Distillation (HSD) method, tailored for neuromorphic datasets.
arXiv Detail & Related papers (2024-09-19T06:52:34Z) - Training a General Spiking Neural Network with Improved Efficiency and
Minimum Latency [4.503744528661997]
Spiking Neural Networks (SNNs) operate in an event-driven manner and employ binary spike representation.
This paper proposes a general training framework that enhances feature learning and activation efficiency within a limited time step.
arXiv Detail & Related papers (2024-01-05T09:54:44Z) - Temporal Contrastive Learning for Spiking Neural Networks [23.963069990569714]
Biologically inspired neural networks (SNNs) have garnered considerable attention due to their low-energy consumption and better-temporal information processing capabilities.
We propose a novel method to obtain SNNs with low latency and high performance by incorporating contrastive supervision with temporal domain information.
arXiv Detail & Related papers (2023-05-23T10:31:46Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Rethinking Pretraining as a Bridge from ANNs to SNNs [13.984523794353477]
Spiking neural networks (SNNs) are known as a typical kind of brain-inspired models with their unique features.
How to obtain a high-accuracy model has always been the main challenge in the field of SNN.
arXiv Detail & Related papers (2022-03-02T14:59:57Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks (SNNs) operate with asynchronous discrete events (or spikes)
We present a computationally-efficient training technique for deep SNNs.
We achieve top-1 accuracy of 65.19% for ImageNet dataset on SNN with 250 time steps, which is 10X faster compared to converted SNNs with similar accuracy.
arXiv Detail & Related papers (2020-05-04T19:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.